

Central Coast Watershed Studies

Publication No. WI-2012-05 The Watershed Institute

Division of Science and Environmental Policy California State University Monterey Bay

http://watershed.csumb.edu

100 Campus Center, Seaside, CA, 93955-8001 831 582 4452 / 4431 San Clemente Dam Removal and Carmel River Reroute Monitoring Plan: Carmel, CA

CSUMB Class ENVS660 Fall 2012:

Scott Blanco Brittani Bohlke (Project Manager) Cherie Crawford Christina David Thomas Delay Shane Keefauver Gwen Miller Polly Perkins (Project Manager) Rochelle Petruccelli Kirk Post John Silveus Doug Smith (Editor, Instructor)

Acknowledgements

We are grateful for the assistance of:

- Monterey Peninsula Water Management District (Kevan Urquhart, Larry Hampson, Thomas Christensen)
- NOAA Fisheries (David Boughton, Thomas Williams)
- US Geological Survey (Amy Draut, Jonathan Warrick)
- Gabriela Aberola
- Association of Monterey Bay Area Governments

This report primarily represents graduate student work completed within the constraints of a fixed-duration (five week), limited-verification college class setting.

This report may be cited as:

ENVS 660, CSUMB Class. Blanco S, Bohlke B, Crawford C, David C, Delay T, Keefauver S, Miller G, Perkins P, Petruccelli R, Post K, Silveus J, Smith D. 2012. San Clemente Dam Removal and Carmel River Reroute Monitoring Plan: Carmel, CA. The Watershed Institute, California State Monterey Bay, Publication No. WI-2012-05, 93 pp.

Executive Summary

This study was conducted as part of a class project by students in the Advanced Watershed Science and Policy (ENVS660) course at California State University at Monterey Bay (CSUMB). The goal of this paper was to create a monitoring plan to record and quantify impacts of dam removal and river reroute on the Carmel River along the California Central Coast.

California's dams are aging, and many will need to be decommissioned over the coming decades. While the impacts of dam construction are well documented by volumes of scientific literature, we have limited understanding of both short and long-term environmental impacts of dam removal. This imbalance reflects the insufficient number of dam removal monitoring studies. Each new instance of dam removal offers an invaluable opportunity for scientific study within the context of a "natural laboratory." The results of such studies can be used to predict the impacts of subsequent dam modifications in the state and beyond.

The 91-year-old San Clemente Dam (SCD), which is impounding sediment of the upper Carmel River, is scheduled to be fully decommissioned by 2016 because of seismic safety issues. This event provides the next opportunity to assess the impacts of dam removal on related biological and physical systems of the watershed. This example of decommissioning is unique from previous examples because the great volume of sediment currently stored in the reservoir will be engineered and stabilized in place rather than released downstream. Simultaneously, the Carmel River will be permanently rerouted through a nearby tributary to prevent displacement of the stabilized sediment.

Watershed systems susceptible to change due to dam removal were analyzed using literature reviews and also presentations by regional resource managers and scientists. The watershed systems considered in this monitoring plan are divided into two overarching categories. First order changes (hydrology, fluvial geomorphology, coastal geomorphology) are measurable changes in the generally abiotic systems of the watershed. Second order impacts (aquatic, terrestrial and marine ecosystems) within the biological systems of the watershed are hypothesized to result from the first-order changes.

For each system we discuss the processes that may lead to physical or Based upon those discussions, we specify testable biological change. hypotheses that can be evaluated by comparing pre- and post-dam data sets. We cite the locations of pre-existing data sets and propose detailed monitoring strategies for both pre- and post-dam time periods. While we anticipate that some systems might show significant impacts soon after dam decommissioning begins, we have also planned for longer time frames of monitoring for might slowly. systems that react more

Table of Contents

Acknowled	lgements	.ii
Web Produ	ucts Error! Bookmark not define	d.
Executive	Summary	iii
Table of Co	ontents	.5
1 Introd	uction	.7
1.1 Ba	ckground	7
1.2 Stu	ıdy area – Carmel Watershed	12
1.3 Go	al	13
1.4 Ge	neral Methods	13
2 First-O	rder Changes	14
2.1 Hy	drology and Water Quality	14
2.1.1	Background	14
2.1.2	Hypotheses	14
2.1.3	Existing Data Sets	16
2.1.4	Methods	18
2.2 Flu	vial Geomorphology	25
2.2.1	Background	25
2.2.2	Hypotheses	25
2.2.3	Existing Data Sets	26
2.2.4	Methods	29
2.3 Co	astal Geomorphology	33
2.3.1	Background	33
2.3.2	Hypotheses	33
2.3.3	Existing Data Sets	34
2.3.4	Methods	35
3 Second	d-Order Impacts and Consequent Biological Impacts	38
3.1 Aq	uatic Ecosystem	38
3.1.1	Background	38
3.1.2	Hypotheses	40
3.1.3	Existing Data Sets	41
3.1.4	Methods	43
3.2 Te	rrestrial Ecosystem	47
3.2.1	Background	47
3.2.2	Hypotheses	48
3.2.3	Existing Data Sets	50
3.2.4	Methods	53
3.3 Ma	arine Ecosystem	58
3.3.1	Background	58
3.3.2	Hypotheses	59
3.3.3	Existing Data Sets	60
3.3.4	Methods	62

4	Discussion	64
5	References	67

1 Introduction

1.1 Background

Dams provide valuable services including municipal water supplies, irrigation, hydroelectric power, improved navigation, flood protection, and expanded recreation opportunities (Graf 1999). While dams provide valuable services, undesirable ecosystem changes have become apparent over numerous scales (Graf 1999; Doyle et al. 2003). Common impacts include fish migration barriers, recruitment of invasive species, downstream channel degradation, beach erosion, and water quality degradation.

In general, dam and reservoir impacts have been well documented, but the impact of decommissioning dams is still unclear, with few examples or large scale removals to draw upon. In recent years, the Marmot Dam (Podolak 2010) and Elwha Dam (Winter and Crain 2008) were decommissioned for chiefly environmental reasons, but published accounts of the related impacts are still sparse. According to the Association of State Dam Safety Officials, the average life expectancy of a dam is 50 years at which point material and structural integrity may be considered compromised (ASDSO 2000). Over 30% of dams in the United States are over 50 years old (ASDSO 2000), underscoring the need for scientific studies that illuminate the long- and short-term environmental impacts of dam removal. San Clemente Dam (SCD) offers the opportunity to study dam removal impacts in the Carmel watershed of the California Central Coast (Fig. 1).

Figure 1. Carmel River watershed, Monterey County, CA. The black polygon indicates the Carmel River watershed boundary, while blue denotes the river location and a few primary tributaries. San Clemente Dam (SCD) is indicated.

Constructed in 1921, SCD is a 106-foot-high concrete-arch dam located approximately 18.5 miles from the Pacific Ocean on the Carmel River in Monterey County, CA (Capelli 2007; Fig. 2). When constructed the San Clemente reservoir had a storage capacity of 1,425 acre-feet of water, but as of 2008, it was 90% filled with 2.5 million cubic yards of sediment (SCDRP 2012). The SCD is situated between several seismically-active fault zones including the Cachagua and Tularcitos faults (Fig. 3). The California Department of Water Resources (Division of Safety of Dams) determined that the SCD would not withstand the seismic loading from a Maximum Credible Earthquake or endure a Probable Maximum Flood (Capelli 2007).

Figure 2. SCD on the Carmel River, CA. (Xasuan, 2012)

Figure 3. Geologic map of the Carmel River watershed (Geologic data from Rosenberg, 2001).

In response, the dam owner (California American Water Company) hired URS Corporation to create a plan to decommission the dam. The plan is unique from other projects because it stabilizes the reservoir sediment in place, and reroutes the Carmel River into an existing adjacent channel that circumvents the sediment. The current Carmel channel will be rerouted, into the historic channel of San Clemente Creek, where the combined flow will pass around the sediment wedge, utilizing the historic San Clemente channel (Fig. 4).

Figure 4. Schematic of channel geometry before (A) and after (B) SCD removal and Carmel River reroute. Background is oblique aerial photographic view in upstream direction (Google Earth).

The technical, legal, regulatory, and economic processes required to remove the SCD are nearly complete. This historic dam removal will be one of just a handful of larger dam removals to have occurred worldwide. The paucity of real-world examples of dam removal means that the short and long-term consequences of removal are only poorly understood. While dam removal projects may achieve the immediate goals of improved fish passage or improved safety, the dynamic nature of river processes dictates that other unintended positive and negative impacts will certainly occur. The ultimate effects of future dam removal projects would be less uncertain if there were a synthesis of the collective knowledge of past dam removal projects. In this regard, we present a monitoring plan that is specific to the climatic, geologic, ecological, and land-use context of the Carmel watershed.

1.2 Study area - Carmel Watershed

The Carmel watershed lies within the Santa Lucia Mountains at the apex of several fault zones. It is underlain by poorly consolidated marine sediments as well as metamorphic and granitic formations with a drainage area of 255 square miles (Capelli 2007; Fig. 3). The watershed ranges in elevation from slightly greater than 4,000 feet to sea level. The Carmel River is 36 miles long, beginning in Los Padres National Forest and draining into the Pacific Ocean near Carmel, CA. The central California coast has a Mediterranean climate with moderate year-round temperatures. Virtually all precipitation falls between November and April, with 60% falling between December and February (Kondolf and Curry 1986). The Carmel River watershed developed into a highly dynamic system, experiencing large seasonal variability in flow levels with subsequent variation in sediment transport from the upper watershed to the lagoon and ocean (PWA 2007). Species of concern include the steelhead trout (Oncorhynchus mykiss) and California red-legged frog (*Rana aurora draytonii*), both of which are currently listed as threatened at federal and state levels. Portions of the lower Carmel River floodplain have been developed with a variety of residential, commercial, and recreational (including golf courses) uses, some of which are subject to periodic inundation from the Carmel River (Capelli 2007).

1.3 Goal

The overarching goal of our study was to create a hypothesis-driven monitoring plan that can quantify the physical and biological changes related to the removal of SCD. The focus of this plan was to capture physical changes to the system that can influence ecosystem function or cause risk to property.

1.4 General Methods

We divided the monitoring plan into first-order changes (hydrology, fluvial geomorphology, coastal geomorphology) and consequential second-order biological impacts (aquatic, terrestrial and marine ecosystems). We proposed null hypotheses representing the status-quo for the Carmel River, with alternate hypotheses being detectable change between the pre-removal and post-removal time periods.

The Carmel River has naturally high background variability in hydrology and sediment supply through space and time, with the system varying dramatically on a decadal scale. Lack of baseline data characterizing this variability presented difficulties in the formation and investigation of hypotheses. As this may be the first attempt to reroute a river around impounded reservoir sediment, interpreting data and literature from previous dam removals was also problematic. In each case, the existing data from the literature were considered and supplemented by personal communication with local and regional watershed experts before an hypothesis was created. Hypotheses and monitoring strategies were improved through this feedback with watershed experts from the MPWMD, NOAA, and the USGS.

2 First-Order Changes

2.1 Hydrology and Water Quality

2.1.1 Background

Hydrologic conditions on the Carmel River are primarily driven by precipitation frequency, intensity and spatial distribution. Regional climactic conditions are primarily driven by proximity to the ocean and mountainous regions as well as pressure zone pathways. Climate conditions are commonly referred to as Mediterranean, where seasonal rain can supply highly variable annual, seasonal and spatially distributed rainfall. The SCD has historically received from 3–46" of precipitation over any particular winter season. Regional climate variability, geomorphic characteristics, and modified floodplains have dramatically altered the natural state of the river. Physical and chemical water quality (WQ) degradation resulting from prolonged water residence time, land use change, channel modification, and both surface and groundwater extraction have occurred throughout the Carmel River watershed since mid-1800's (MPWMD 2003). Subsequently, the anthropogenic modifications of water quality and quantity have affected invertebrates, amphibians, fish and riparian vegetation.

2.1.2 Hypotheses

Disturbance, modified hydrologic conditions, and seasonal fluctuations in annual precipitation each influence WQ and quantity conditions over different temporal and spatial scales. Unavoidable change in temperature, dissolved oxygen (DO), turbidity, and pH are anticipated during the construction and reroute phases of dam removal. In addition, constituents including iron, manganese, fecal coliform, specific conductivity and total dissolved solids (TDS) may differ from previously collected data. The null hypothesis suggests no change in water parameter concentrations will occur due to the Carmel River dam removal and reroute. An alternative hypothesis suggests that both short-term (ST) and long-term (LT) dissimilarities will be observed.

- H₀: No change in mean diel temperature
- H_a: ST-Increased mean surface water temperature LT-Stabilization of water temperature around new mean and new variance
- H₀: No change in mean turbidity
- Ha: ST- Increase in daily mean turbidity below SC dam LT- Change in daily mean turbidity
- H₀: No change in dissolved oxygen (DO) concentrations
- Ha: ST- Decreased daily mean DO
 - LT- Negligible difference to slight increase in DO
- H₀: No change in mean pH
- H_a: ST- Increase in pH mean and variance LT-No difference in pH from baseline data values
- H₀: No change in hydrogen sulfide (H₂S) daily mean or variance
- Ha: ST- Increase in H₂S mean concentrations and variance
 - LT- Slight decrease in H₂S mean
- H₀: No change in nutrient concentrations
- Ha: ST- Increased mean and variance of nutrient levels
 - LT- Similar nutrient concentrations as baseline data values
- H₀: No change in hazardous/toxic substances
- Ha: ST- Increase in occurrence and concentrations of toxic analytes
 - LT- No change in hazardous/toxic substances

2.1.3 Existing Data Sets

Previous WQ monitoring participants include: Cardno Entrix, Monterey Peninsula Water Management District (MPWMD), Mussetter Engineering Inc. (MEI), Denise Duffy & Associates, California State University Monterey Bay (CSUMB), Surface Water Ambient Monitoring Program (SWAMP), and Central Coast Ambient Monitoring Program (CCAMP). Table 1 displays public WQ monitoring documents and resources relevant to future post-SCD removal and river reroute. Table descriptions contain relevant pages, parameters analyzed, year, and in some cases, location. Although this is not a comprehensive list, it does provide substantial documentation of pre-dam removal WQ conditions. Understanding the background variation is fundamental to determine variability resulting from the SCD Removal and Reroute activities.

Subject	Summary	Reference
	Mitigation Program Annual Reports, Annual Precipitation as flow (Q), precipitation, stream flow, lagoon water Level monitoring (II-1.6.7; IV-5)	MPWMD 2000-11
Precipitation	Physical and hydrologic assessment of the Carmel River watershed	Smith et al. 2004
	Precipitation, geospatial precipitation data	AMBAG webpage
	Annual Discharge, Lagoon stage (II-4) 1992- present	MPWMD Mitigation Program Annual Reports
Discharge/Stage	MPWMD Surface water resource data report 2004– 2008. Precipitation, discharge, historic tree-ring analysis	James 2010
	USGS Carmel River gage sites	MPWMD 2005-12
Flood	Flood inundation mapping and flood hazard evaluation. Model includes dam to estuary, 100- year flood plain inundation, water surface elevation, stage elevation, sediment transport model, downstream impact analysis of the Carmel river reroute and removal option for the San Clemente	MEI 2007
	Potential effects of groundwater extraction on the Carmel lagoon, stage height, groundwater	Watson and Casagrande 2004

 Table 1. Existing hydrology and water quality data sets.

	extraction wells	
	Physical hydrology characterization including	Smith et al. 2004
	precipitation, surface and groundwater resources.	
	Pg. 24–40. Physical and hydrologic assessment of	
	the Carmel River watershed	
	Mitigation Program Annual Reports, RM-27, 25.4,	MPWMD 1991-2012
	18.5, 17.1,10.8 ,0.1, semi-annual WQ monitoring:	
	pH, temp, DO, WSE, Conductivity, Turbidity, CO2	
	(III-1 to 4) 1991-present	
	Sonde measurement of water quality temporal	ENVS 2010
	variation. Lagoon profiles and isographs of salinity,	
	temperature, DO, chlorophyll <i>a</i> , light	
	Dam removal WQ impacts (Sect 4.2.2), SCD seismic	URS and MPWMD 2012
	safety project: Draft supplemental EIR #2	
	SCH#2005091148	
	Biological Opinion (BO), water quality relating to	NOAA and NMFS 2012
	Gewatering search WQ behitst for steelbood in Correct	
	Lagoon	ENV3 2010
	Pa 28-35 Physical and hydrologic assessment of	Smith et al. 2004
	the Carmel River watershed	Shifth et al. 2004
	Evaluating good WO babitat for steelbead in the	FNVS 2010
Water Ouality	Carmel lagoon- salinity, temperature, DO, light.	2000
	chlorophyll a	
	Final SEIR SCD Seismic Safety Project: Chpt. 1, 2, 3,	CDWR 2012
	4, 6 WQ. 4.3-1 to 4, Alternate 3: Carmel River	
	reroute & dam removal (3.5–1), Alkalinity, pH,	
	Conductivity, Ions, Metals, Turbidity. 2002 Cardno	
	Entrix data included	
	Data available from 1991 - 2012: contamination,	MPWMD 2012
	septic leak, aquifer quality, semi-annual and annual	
	sampling, chloride, 12.52, 13.65, 14.38, and 8	
	Lower Reach sites, SEC (IV-3 to 10)	
	Potential effects of groundwater extraction in the	Casagrande and Watson 2003
	Carmel Lagoon	
	WQ and aquatic wildlife monitoring	Larson et al. 2005
		Perry et al. 2007
	WQ parameters, groundwater quality and quantity	Bulletin 118: California's
	data. 12–50 semi-annual wells sampled based on	Groundwater 2004
	necessity	

	Surface water monitoring by hydrologic sub-area:	SWAMP 2002
	pH, conductivity, turbidity, DO, temperature,	
	nitrate, nitrite, fecal coliform bacteria, Total	
	Suspended Solids (TSS), Total Dissolved Solids	
	(TDS), CaCO ₃ , chloride, ortho-phosphate	
	Surface water flow and yield data report: Water	James 1994, 1996, 1999, 2005
	Years: 2000–2003, 1996–1999, 1992–1995, 1991–	
	1994, 1991–2005	
	Ambient WQ criteria for DO	Chapman 1986
	Carmel river basin surface WQ data report: Water	Hamilton 2010 (unpublished)
	years 2004–2008. Contains data tables and sample	
	site photos/characterization 2004-2008. Measured	
	parameters: pH, turbidity, temp, conductivity,	
	salinity, carbon dioxide	
	GIS CA Clearinghouse # 2005091148. WQ	DWR 2012
	mitigation practices and mitigation measures	
	during dam reroute and removal	
	Final SEIR SCD Seismic Safety Project: Chpt. 1, 2, 3,	CDWR 2012
Groundwater/Pore	4, 6. CAW Drawdown: 4.3-1 to 29, surface water	
water	sample locations, pore and groundwater samples:	
	DO, turbidity, temperature, pH	
	Surface water dynamics at the Carmel Lagoon water	MPWMD 2005
	years 1991 through 2005	
	In situ depth profiles over time, isopleths, on site	Larson and Watson
Lagoon	lab analysis of physical samples, TSS, turbidity,	2006;Watson and Casagrande
	salinity, temp, DO, chlorophyll <i>a</i> , pH, CO ₂ ,	2002, 2003, 2004; ESSP 2007;
	Suspended Sediment Concentrations (SSC), H_2S .	ESSP 2008; ENVS 2010
	Lagoon subdivision including monitoring locations	

2.1.4 Methods

Complex biogeochemical interactions may occur. We propose stratified, zone-specific sampling based on the detection and exceedance of parameter thresholds for the following reasons: fixed monitoring infrastructure, limited access, budget constraints and appropriate allocation of limited resources.

The timing and spatial location of anticipated impacts is important to consider before designing a monitoring strategy (Table 2). Sub-division of the Carmel River watershed for the purpose of stratified sampling based on impact detection will support increased higher frequency of data. WQ analysis should take place within eight zones including:

- 1) Reference sites upstream of SC reservoir in SC Creek and Carmel River
- 2) Reservoir pore and surface water
- 3) Designed reroute channel
- 4) Below SCD to the Old Carmel River Dam
- 5) Below the Old Carmel River Dam
- 6) Below the Old Carmel River Dam to the lagoon
- 7) The lagoon
- 8) Post-breach marine sampling

WQ changes will first be detected in Zones 3 and 5. Initial monitoring should be concentrated in Zones 1–5 for the purpose of capturing and analyzing short term impacts. Our goal is to capture impacts at the finest resolution while also capturing spatial effects as the WQ parameters are transported to receiving water. Leveraging *in-situ* YSI data, in-stream continuous loggers and physical monitoring should provide data that can be statistically analyzed. The following sites are going to be used: (Fig. 5).

Monitoring Station Type

- CAW Drawdown Monitoring Stations .
- MPWMD Surface Monitoring Stations •
- Surface Stations (2002 Surface and porewater Study)
- Porewater Stations (2002 Surface and porewater Study)

2005 San Clemente EIR/EIS California American Water Co.

Figure 4.3-1 Water Quality Monitoring Stations
 Table 2.Hydrologic monitoring methods.

Subject	Predicted Change	Implications	Methods	Location	Frequency
	ST: Similar to	\cdot key physical driver of	<i>In situ</i> YSI Environmental	Control site, locations	Continues <i>in-</i>
	previous levels	habitat in aquatic	Multiprobe System and	outlined in SEIR,	<i>situ</i> or diel
		ecosystems	physical snap-shot samples.	previously MPWMD sites,	monitoring
		• Important	Create reference sites above	in Zones 1–4	
		environmental	dam site, compare to previous		
Temperature (T)		determinant of water	data		
	LT: Slight decrease	chemistry, especially DO	<i>In situ</i> YSI Environmental	USGS gage sites, MPWMD	Weekly or
		• Fundamental constraint	Multiprobe System and	collection sites, in Zones	monthly
		to supporting aquatic	physical snap-shot samples,	1– 6	sampling regime
		ecosystems	compare with previous data		
		• Stressor			
	ST: Decreased	• Factor in atmospheric	<i>In situ</i> YSI Environmental	Control site, SEIR	in-situ
	concentration	reaeration and	Multiprobe System and	locations for both surface	continuous
		photosynthetic activities	physical snap-shot samples,	and groundwater	monitoring
		of aquatic plants.	amperometric, or		
		• Determinant of	spectrophotometric method.		
		chemical and biological	Compare with previous		
Dissolved Overen		reactions in ground water	MPWMD, URS, CCAMP datasets		
Dissolved Oxygen (DO)	LT: Stabilization to post-1949 Los Padres Dam construction levels	and surface water • Inversely correlated: higher water temperature and turbidity resulted in lower DO • Metabolic state of steelhead and rainbow trout	<i>In situ</i> YSI Environmental Multiprobe System, amperometric, or spectrophotometric method, or continuous data logger installation	USGS gage sites, MPWMD collection sites	Daily or bi- weekly

рН	ST: Change at SCDRR site change due to unweathered geologic exposure LT: Stabilization to post-1949 Los Padres Dam	• Determines solubility and biological availability of chemical constituents, measure of the relative amount of free hydrogen and hydroxyl ions in the water	<i>in-situ</i> YSI Environmental Multiprobe System and physical snap-shot samples <i>in-situ</i> YSI Environmental Multiprobe System and	Control site, below SCDRR site, MPWMD sites, estuary Control reach, SC Creek, below SCDRR	Daily Weekly
Conductivity	ST: Minimal change	TDS decreases may indicate introduction of pollutants into system	<i>In-situ</i> YSI Environmental Multiprobe System and physical samples	Control site, below SCDRR site, MPWMD sites, estuary	Daily
	LT: Reduction of Total Dissolved Solids (TDS)	and hydroxyl ions in the water	Physical samples	Control reach, SC Creek, below SCDRR	Bi–Monthly
Nutrionts	ST: Increase	• Inorganic and organic nutrients are characterized as limiting growth factors aquatic flora and fauna	<i>in-situ</i> YSI Environmental Multiprobe System and physical snap-shot samples, SEIR previously defined locations of both surface and groundwater	Upstream of coffer dam, detention pond discharge sites, pore water, control site, SC Creek, reroute channel, below dam construction, estuary	Daily
Nutrents	LT: Reduction		<i>in-situ</i> YSI Environmental Multiprobe System and physical snap-shot samples. Further analysis of water samples for specific constituents	Control site, below SCDRR, estuary, MPWMD previous locations	Bi-weekly or weekly

	ST: Increase	Fine sediment transport Microfauna death	Turbidimeter, YSI handheld	Control site above SC	Daily
		Above thresholds fich	nhuti parameter instrument,	shannel below dam site	
		• Above thresholds him	physical grab samples	channel, below dann site,	
		fatality may occur		previous conected sites	
				throughout watershed,	
Turbidity		-		detention pond discharge	
	LT: Decrease		Turbidimeter, <i>in–situ</i> YSI	Control site, reroute	Weekly
			Environmental Multiprobe	channel, SC creek, old	
			System and physical snap-shot	Carmel river dam,	
			samples, compare with	previous sites, estuary	
			previous data		
	ST: Increase in	\cdot Toxic to nervous and	Field water samples due to	Control site above SC	Hourly during
	short term	respiratory systems of	rapid dissolution	reservoir, reroute	construction
	occurrence and	aquatic organisms		channel, below dam site,	activities near
Hydrogen Sulfide	severity	• Fatal for invertebrates		previous collected sites,	the or stream
(H ₂ S)		Reduces DO		detention pond discharge	bank margin
	LT: Decrease	concentrations	Field water samples due to	Zones 4–6	Weekly
			rapid dissolution		
	ST: Significant	•Can be catastrophic to	Specialized lab analysis of	Random samples below	Daily or weekly;
		local flora and fauna	physical sample	construction sites,	dependent upon
		\cdot Pose both short and		emergency sampling	substances
		long term affects to both			present
Hazardous & toxic		surface and groundwater			
substances		resources			
substances		• Are difficult to capture			
	LT: No change	using physical 'grab	Unknown	Unknown	Post
		sample techniques, must			construction bi-
		be mitigated			monthly or
		Se miligated			monthly

	ST: Negligible	\cdot Can be used as proxy for	Field water sample requiring	Control sites, below	Daily
	change	pathogens in water	filtration-incubation and	SCDRR	
		system	colony counts		
Fecal Collform (FC)	LT: Reduction		Physical water sample	Control sites, below	bi-weekly or
			requiring filtration-incubation	SCDRR	monthly
			and colony counts		
	ST: Increase	• Affects pH, demand by	Field water sample, <i>in-situ</i> YSI	Control site, SEIR defined	Daily or
		biological organisms and	Environmental Multiprobe	samples sites for pore	following storm
		chemical equilibrium	System and physical snap-shot	water, detention basin	events
		within the system	samples	discharge, stormwater	
Discolved				runoff below reservoir	
manganese and				sediments, SC Creek	
iron	LT: No Change		Physical sample, YSI multi-	Control, pore water,	Bi-weekly, with
			probe meter	detention basin	increased
				discharge, stormwater	frequency
				runoff below reservoir	following
				sediments, SC Creek	precipitation
					events
	Increase in stage	Increased flood	In stream measurements to	All USGS gages, at	Standard
	height for a given	frequency, causing threat	calculate gage specific stage-	beginning and end of	frequency at
	discharge	to near-shore	discharge curve, gage height,	reroute channel, Carmel	USGS gages
Stage height		infrastructure	Multi-reach variable flow	Lagoon	
			HEC-RAS model, LiDAR or		
			other accurate transects, aerial		
			imagery		

2.2 Fluvial Geomorphology

2.2.1 Background

The Carmel watershed lies within the Santa Lucia Mountains at the apex of several fault zones; it comprises poorly lithified marine sediments and highly-fractured metamorphic and granitic rocks (Capelli 2007; Figure 3). The river flows through the alluvium-filled Carmel Valley, where sediment depths range from 15 to 20 m before emptying into the Carmel Lagoon (Kondolf and Curry 1986). The river channel has stretches of meandering flow, steep constrained reaches of bedrock, and a few short braided reaches (Kondolf 1996). River valley width and slope are two contributing factors to river behavior that are of particular interest in the Carmel River.

The SCD has retained 2.5 million cubic yards of bedload and large woody debris (LWD) since its construction, depriving the lower river of sediments and LWD for almost 100 years (MEI 2008a). Rivers that have been deprived of natural sediment inputs from upstream of dam sites often compensate by eroding sediments from the lower floodplain below the dam (Draut et al. 2011). Armoring along the river has been, and still is, used to combat the sediment starved reaches of the river from eroding banks and widening the river valley. Mussetter Engineering, Inc. (2002) found that up to 40% of the river's banks from the mouth to Rosie's Bridge (RM 30) have been artificially hardened to protect infrastructure from erosion. Hardened banks have prevented sufficient compensational erosion from taking place in the lower floodplain, causing the river to degrade and narrow (Kondolf 1986). Previous studies indicate that background variation of channel bed elevation in the upper watershed ranges from 10-50 cm, while fluctuations in the lower watershed are much greater (Kelly 2012; MEI 2008a).

2.2.2 Hypotheses

Changes in sediment load to the downstream floodplain of the Carmel River after the SCD removal and reroute has significant consequences for the Carmel River ecosystem and the surrounding infrastructure. This monitoring plan pursues multiple hypotheses regarding the effects of dam removal and river reroute on geomorphology of the river channel. The following hypotheses are:

H₀: No change in LWD density and size H_a: Increased LWD density and size

H₀: No change in bed elevation H_a: Increased bed elevation

H₀: No change in thalweg profile

Ha: Change in thalweg profile

H₀: No change in bed material size distribution H_a: Increase in fine sediments (sands and gravels)

H₀: No change in bed load volume H_a: Increase in bed load volume

H₀: No change in suspended sediment load volume H_a: Increase in suspended sediment load volume

H₀: No change in embeddedness

H_a: Long-term increase in embeddedness

2.2.3 Existing Data Sets

Previous studies of the geomorphology of the Carmel River were collected to provide insight for a comprehensive monitoring plan (Table 3). Mussetter Engineering Inc., on behalf of the Monterey Peninsula Water Management District, conducted predictive modeling regarding sediment loading and changes in channel morphology after SCD removal and reroute. LWD monitoring has been conducted by California State University Monterey Bay. It is recommended that the previous studies be

used to help facilitate future sampling locations and monitoring techniques.

 Table 3. Existing geomorphology data sets.

Subject	Summary	Reference
Bank erosion	 Characterization of bank erosion 1911–1980 Used historic surveys, photographs, and topographic maps Relocated and re-surveyed 30 cross- sections surveyed in 1965 by US ACE (not georeferenced) Classified slope, grain size, degree of bank stability and collected bed/bank sediment samples 	Kondolf and Curry 1986
	 Sediment transport analysis of proposed reroute using computer models Bed sediment size distribution Predicted timing, volume, distribution of sediments transported by new channel and mean bed elevation changes Appendix C1 contains computed average suspended sediments concentrations Appendix D contains temporal change in median grain size 	MEI 2008a
Sediment	 Potential failure models of the bypass channel including: Channel modification that could cause a partial or total barrier to upstream migration of adult steelhead Temporary disassembly of channel morphology Predicted excessive floodplain scour and removal of riparian habitat Predicted reduction of sediment loads to Pacific Ocean 	MEI 2005 Willis and Griggs 2003
	 Stream gauge locations Post-dam sand fluxes Estimated sand flux and sediment loading Predicted effects of step-pool design of reroute on 	Slagel and Griggs 2008 USSD 2011
	 sedimentation Predicted future aggradation in step-pool system Description of river reroute plans 	

	• Surveyed six cross-sections in the upper river and	Kelly SA 2012
	conducted pebble counts at 8 reaches to assess bed	
	elevation changes and grain size distribution	
	• Contains georeferenced cross-sections in Carmel Lagoon (1994-2011)	MPWMD 2012
	• Topographic mapping of 19 river miles below SCD at 2ft contour intervals	MEI 2002
	Sediment transport model for same 19 RM	
	Observed geomorphic conditions (bed material grain	
	size, average gradient, length of bank with hardening	
	protection, annual sediment supply, suspended load	
	estimates) and took sediment samples along same 19 RM	
	Bathymetric profile of thalweg in lagoon	Castorani et al. 2008
	• Surveyed the longitudinal profile from river mount to the	GMA 2007
	Robinson Canyon Bridge and in Carmel Valley Village	
	reach	
Longitudinal profile	 Surveyed cross-sections at main bridges 	
	Compared 2007 surveys with previous longitudinal	
	profiles	
	Contains survey control points used	
	Thalweg profiles along Carmel River	Chaney <i>pers. comm.</i>
	Thalweg survey locations	
	• 7 survey reaches with: GPS location of each piece of LWD,	Smith et al. 2003
	average density, length and width	
	• Evaluated physical function of LWD in terms of bank	
	protection/bed scour	
	• 13 survey reaches with: GPS location of each piece of	Smith and Huntington
LWD	LWD (some tagged), average density, length and width of	2004
	LWD	
	Evaluated physical function of LWD in terms of bank	
	protection/bed scour	
	• Re-located Smith and Huntington (2004) tagged LWD to	Price 2005
-	assess distribution and movement	
Predicted post-dam	Potential issues of upstream/San Clemente creek	MEI 2008b
removal	diversion (erosion, channel morphology, landslides, etc)	
geomorphology		
	Visual embeddedness estimates	
Embeddedness	Characterization of embeddedness throughout stream	Sylte and Fischenich
	channel	2002

2.2.4 Methods

We propose to monitor the impacts of the SCD removal and reroute on geomorphological processes by surveying cross-sections within multiple reaches of the river, creating a longitudinal profile, sampling bedload, tagging and tracking LWD, and analyzing embeddedness of bed material. We have suggested five reaches for intensive study that represent the diversity of the Carmel River channel and are likely to exhibit change after dam removal (Figure 6). Cross-sections and study areas from previous research are also used and are cited below (Table 4).

Figure 6. Proposed reaches for geomorphic monitoring.

 Table 4. Fluvial geomorphology monitoring methods.

Variable	Predicted Change	Implications	Methods	Location	Frequency
Variable Bed elevation	Bed elevation will increase and channel will become more braided	Implications Influences flood stage, channel migration, fish habitat, bank erosion, lagoon breaching frequency	Methods Benchmarked channel cross- section surveys	Location Five suggested reaches, using pre-established cross sections for the lagoon (MPWMD 2012). Reaches include: 1. Pine Creek to reroute channel 2. Rerouted channel 3. DeDampierre Reach, between Esquiline Rd and Boronda Rd 4. Garland Ranch Regional Park	Annually for first 5 years, then every 5 years for up to 40 years
				5. The lagoon	
Thalweg profile	Gradual aggradation	Potential negative impacts on fish habitat, changes in channel migration, bank erosion	Use total station surveying equipment according to (GMA 2007)	From river mouth to Pine Creek	

Large woody debris	Increased density	Added diversity to stream	Complete survey of	Smith et al. 2003 and 2004
	and average size	habitat, offered bank	reaches for LWD, tagging	survey reaches, plus
		protection, supplied	LWD when detected,	additional reach at base of
		nutrients to aquatic	recording designated	river reroute site
		ecosystem. There was also	parameters (Smith et al.	
		concern with negative	2003, 2004) and	
		impacts to in-stream	recovering GPS	
		structures such as bridges	coordinates with a	
			handheld unit	
Bed material size distribution	Increase in fine	Increased spawning habitat	Conduct Wolman Particle	Longitudinal profile and
	sediments (sands &	for fish, potential negative	Count	cross-sections
	gravels)	impacts on benthic		
		macroinvertebrates,		
		change in Carmel beach		
		grain size		
	Long-term increase	Impact on spawning	Helley-Smith bedload	MEI (2008) benchmarked
Red load	in bed load volume	habitat for steelhead,	sampler	bridges and at mouth of
Bed Ioad		aggradation/degradation,		each major tributary
		flood stage		
	Increase in	Impacts on fish habitat,	Nilsson Sediment	MEI (2008) benchmarked
Suspended load	suspended load	aquatic vegetation,	Sampler	bridges and avoid locations
	volume	aggradation in lagoon,		directly below tributaries as
		increased turbidity		this can cause heterogeneity
				in grain-size distribution

	Long-term increase	Improved fish spawning	Complete embeddedness	One area within each reach
	in embeddedness	habitat	survey according to	
Embeddedness			Platts/Bain method (Sylte	
			and Fischenich 2002)	

2.3 Coastal Geomorphology

2.3.1 Background

The Carmel River State Beach, governed by the California Department of Parks and Recreation, is one mile long and extends between two granodiorite outcrops from Abalone (Carmel) Point to Granite Point. The beach receives the majority of its sediment from the Carmel River during winter storm events. The beach has historically experienced sediment loss through anthropogenic processes along the Carmel River. Between the 1920's and 1970's, sand and gravel mining depleted sediment from both the river and the beach. Construction of the SCD in 1921 and the Los Padres dam in 1949, further interrupted sediment supply, which is evident through the mound of impounded sediment behind the dam. Floodplain development in Carmel Valley and bank stabilization projects has also reduced sediment supplied to the beach by the river.

During the summer and fall months, the "bar-built estuary" constricts flow of the river from the lagoon into Carmel Bay due to a natural sand berm built by wind, waves, and low rainfall. During winter storm events, the Monterey County Department of Public Works routinely breaches the sand berm to prevent flooding of private residences along the floodplain ([CRTAC] 2007). An adaptive management plan for breaching the bar has included inlet channels engineered to shift the river flow to the north, the south, and perpendicular to the beach. An inlet channel position in the northern section of the beach threatens bluff erosion along Scenic Drive, while a southern inlet channel and perpendicular position drains the floodplain to water levels too low for certain lagoon species, such as steelhead, to survive.

2.3.2 Hypotheses

It is likely that rapid transport of suspended sediment from dam construction activities and post-construction geomorphic adjustments in the overall river system will reach the lagoon system prior to sand and gravel. An addition of sediment to the lagoon may raise the lagoon stage, decrease capacity of the lagoon basin, and increase the frequency of breaching the bar. Gradually, as material moves downstream, adding sand and coarser material to the nearshore system, the beach berm crest will shift seaward, increasing crest elevation, widening the beach, and reducing wave overtopping events.

H₀: No change in grain size in lagoon H_a: Short term fining of lagoon substrate

 H_0 : No change in late summer beach berm crest position H_a : Beach berm crest location shifts seaward

2.3.3 Existing Data Sets

Monitoring changes in beach morphology will determine the impact of the SCD removal and river reroute project due to sediment influx. We suggest mainly following protocols by Storlazzi and Field (2000) who analyzed textural and mineralogical properties of littoral sediments and morphologic and hydrodynamic properties of Carmel River State Beach. Storlazzi and Field (2000) also measured beach widths from 1949–1990 through aerial photography during the summer months. This study shows beach width shortening in the north and central sections while the southern section has had variable widths. More recently, Laudier (2009) measured beach slope, berm height and discussed wave run–up and wave overtopping models on the Carmel River Beach. Many datasets, provided in Table 5, contain Carmel Bay physical parameters, historical accounts of the breaching locations, and river mouth migration rates.

Subject	Information Summary	Reference	
	Beach slope	Storlazzi and Field 2000	
Posch geometrikelegic and	Berm height		
beach geomorphologic and	Greatest historical change in width		
nyurouynamic properties	measured from aerial photography (1949-		
	1990)		

 Table 5. Coastal geomorphology existing data sets.

	• Mean beach width (m)	
	• Beach exposure (degrees)	
	Mean relative wave height	
	Modal beach state	
	Beach slope	Laudier 2009
	Berm height	
	Mean, sorting, skewness	Storlazzi and Field 2000
Beach textural and mineralogical	• Percentages of quartz, feldspars, heavy	
properties (littoral sediments)	minerals, shell material	
	• Wave height, peak period, peak direction,	Coastal Data Information
	average period	Program
	Daily/Monthly tides	NOAA Tides & Currents
	• Direction of longshore currents and	Thornton 2005
Carmel Bay Physical Parameters	sediment transport offshore	
	Topographic Laser Shoreline Mapping	CSUMB Seafloor Mapping
	Data: 2 m resolution of shoreline mapping	Lab
	in Carmel Bay	
	• Susceptibility index for breaching from the	Kraus et al. 2008
	lagoon side	
	• Location of river mouth opening (1880-	Thornton 2005
Lagoon/Breaching Dynamics	2005) and river mouth migration rates	
	• Date of first opening for water year (WY),	James 2005
	maximum lagoon level on opening date,	
	closing dates w/ lagoon levels	

2.3.4 Methods

Suggested monitoring methods include monitoring grain size distribution in the lagoon and monitoring the beach profile (Table 6). Monitoring grain size distribution through sieve analysis in the lagoon can determine the amount and size of sediment particles the river transports after dam deconstruction and river reroute. Using an RTK-GPS to track the berm crest position provides high vertical and horizontal accuracies to monitor the smallest changes in the beach profile (Lentz and Hapke 2011, Dawson and Smithers 2010).

Variable	Predicted	Implications	Methods	Location	Frequency
	Change				
Grain size distribution/analysis	Short term fining in the lagoon	An increase in fine sediment may raise water levels and increase the threat of flooding to local residences	Sieve analysis (Storlazzi and Field 2000)	Sediment sample from the thalweg, channel center and 3 m locations on both sides of center line at 3 locations (Figure 7) : Site 1:mouth of the river Site 2: 200 m upstream of mouth Site 3: south arm	Every June during low-flow conditions
Beach profile	Beach berm crest shifts seaward	An increase in sediment on the beach will widen the beach, raise the berm elevation and increase earlier manual breaching events	RTK-GPS or total station (Lentz and Hapke 2011)	Along beach berm crest, from 100 m south of the lagoon to Scenic Drive	Every September before rainfall and annual breaching

 Table 6. Coastal geomorphology monitoring methods.

Figure 7. Map of grain size distribution monitoring locations in the lagoon.

3 Second-Order Impacts and Consequent Biological Impacts

3.1 Aquatic Ecosystem

3.1.1 Background

The aquatic ecosystem of the Carmel River encompasses a diverse range of biota, which are all affected by anthropogenic changes throughout the watershed, including the SCD. Great emphasis has been placed on the endangered steelhead, a historic resource of the Carmel River that has been degrading over the past century. We are approaching this monitoring plan at an ecosystem-scale in an effort to encompass all physical and biological interactions of this aquatic habitat.

Steelhead populations (*Onchorhynchus mykiss*) in the Carmel River are of particular interest because fish in the river occupy a system near the southern limit of a distinct population segment, and are subject to environmental conditions very different to those of northern populations (Hayes 2008). The sandbar-closed lagoon that forms during low flow periods provides essential nursery habitat for juvenile steelhead. The seasonal closure of the lagoon may constrain the temporal emigration period of smolts to the ocean, as well as the delay the return of spawning adults to the river (Bond et al. 2008; Hayes et al. 2008). The SCD also presents a challenge to the emigration of fish from the upper watershed to the ocean. While the dam's fish ladder facilitates some movement upstream, for downstream migration fish have to swim over the edge of the dam and drop to the plunge pool below. This drop of over 100 feet into the pools may be responsible for the death of fish during their trip downstream to the ocean.

Steelhead display highly variable life history patterns as they are both facultatively anadromous, meaning that they choose if and when to return to the ocean, and iteroparous, meaning that they can spawn multiple times. Subtle changes in freshwater conditions, by natural or anthropogenic factors, may alter current life history trajectories, sending

fish into alternative pathways resulting in changes in demographic rates within a population and the population's viability. Challenges in population monitoring, steelhead year class identification, and species management are well documented (Satterthwaite 2009).

Juvenile steelhead growth rate and life history trajectory varies in response to environmental differences, and has subsequent effects on marine survival and return of mature adults to spawning areas (Hayes et al. 2008). Growth is dependent on both food availability and on metabolic rate. Steelhead are poikilothermic, meaning their metabolic rate is determined by water temperature. High water temperatures increase energy allocation to catabolic processes, decreasing energy available for growth (Bell et al. 2011). Optimal temperatures for growth of juvenile steelhead are between 15°C and 19°C, and lethal temperatures are between 27.5°C and 29.6°C (Hayes et al. 2008). The removal of the SCD may affect temperature regimes, as discussed in the Hydrology section of this paper. Riparian vegetation may help mitigate this problem by providing shade that keeps water temperatures cools, in addition to providing a control for algal growth (Bell et al. 2011).

Another important function of riparian vegetation is to provide food for benthic macroinvertebrates (BMIs) and steelhead. BMIs use fallen vegetation from the riparian zone for both food and habitat, while steelhead eat insects that fall from the canopy (Allan et al. 2003, Rundio and Lindley 2008). BMIs are not only a food source for steelhead, they are an important indicator of stream health. The riparian zone also adds large woody debris (LWD) to the system, which improves habitat by creating deep pools that are utilized by steelhead as a refuge from predators. Installation of the SCD has reduced the input of LWD affecting the structure and dynamics of upstream and downstream aquatic and riparian habitats. Dams can also impede the natural flux of water, sediments, and nutrients (Thomson et al. 2005). Assessment of water quality can be made by analyzing both BMI and algal assemblage. This provides an indicator on how dams have affected water quality, if a reference reach is available.

Bed material size is another important feature for the aquatic ecosystem. Gravel is vital for successful steelhead spawning and BMI habitat (King 2010). High levels of interstitial fine sediment, which is predicted after dam removal, can clog gravel beds. Inhibiting the movement of gravels during redd construction attempts inhibits the ability of swim-up fry to incubate and emerge. Bed materials that are too coarse may be too large for the fish to move to dig redds, a problem common downstream of dams where supplies of smaller, mobile gravels are diminished or eliminated. It is believed that the optimal range of bed materials for spawning success ranges from 5.4mm to 78mm (Kondolf and Wolman 1993, Kondolf 2000). Increased sediment also blankets algae populations and inhibits photosynthesis.

3.1.2 Hypotheses

Sediment transport may change with the dam removal, as discussed in the Fluvial Geomorphology section of this report. If fine sediment transports increase then the areas for suitable redd habitat may decrease along with algae and BMI populations. Fine sediment can also be harmful to steelhead eggs, since fine sediment suffocates eggs. Alternatively if gravel transport increases then redd habitat would increase. Without the dam more fish will have easier access to spawn in upstream locations of the dam. If an increase in redd abundance occurs, Steelhead population should increase, while a decrease in redd abundance will lead to a decrease in population size.

- H₀: No change in steelhead abundance or redd distribution
- H_a: Change in steelhead abundance and redd distribution

H₀: No change in macroinvertebrate assemblage

H_a: Change in macroinvertebrate assemblage

H₀: There will be no change in algal assemblages attached to benthic substrate.

H_a: There will be an effect on algal assemblages attached to benthic substrate.

H₀: There will be no change in floating mat algal assemblages H_a: There will be an effect on floating mat algal assemblages

3.1.3 Existing Data Sets

Records of adult fish counts along the Carmel River are available starting in 1949 and 1973 for juveniles (MPWMD 2004a). The juvenile and adult populations within the Carmel River are lower than historically observed. Currently there is a fish counter located at the SCD that automatically counts the population of steelhead migrating upstream. At the Los Padres Dam adults are trapped and trucked over the dam. Fish trucked over the dam are tallied to obtain the adult population size. See Table 7 for links to past population analysis. MPWMD also installed a dual-frequency identification sonar (DIDSON) to count steelhead within the Carmel River. The DIDSON was installed late 2011 early 2012 and was placed in a location that should capture a majority of the steelhead which utilize the Carmel River (Urguhart 2012). Though fish count data is not yet currently available, once the technology becomes further developed the DIDSON data will be more encompassing for fish counts within the Carmel River. The data currently being recorded with the DIDSON can be processed and compared with data post dam removal. Several areas within the Lower Carmel River have been surveyed for redd abundance. Past data suggests that 41% of redd habitat is between the Narrows and the SCD and 9% is between the Los Padres dam and the SCD (MPWMD 2004a). The region between the Highway 1 bridge and Stonepine Bridge historically has had higher redd counts than areas closer to the SCD. This could be due to the inadequate sediment size location near the Dam.

Based on previous data, Carmel has low BMI assemblage downstream of the SCD, though the taxa of insects present may supply a sufficient food source for salmonids (King, 2010). Furthermore, the BMI assemblage diversifies and the index of biological integrity (IBI) values increases further downstream of the dam. The 10-Year Summary of the MPWMD Bioassessment Program discusses the BMI assemblage and IBI values found within the Lower Carmel River and also suggests one component of the recently drafted SWAMP stream algae procedure could be added to assess amounts of algae along site transects (Table 7). The report does not definitively state why BMI assemblage is worse downstream of the dam but believes higher water temperature and substrate sizes are they key influencing factors. Table 7 highlights the past studies conducted and where the data can be found.

Subject	Information Summary	Reference
	Reach surveyed Via Mallorca Rd. bridge to Los Padres Dam in 2003	MPWMD 2003
Redd Count	Reach surveyed Highway 1 bridge to Los Padres Dam in 2004	MPWMD 2004b
	Reach surveyed Highway 1 bridge to SCD in 2008	MPWMD 2008
	Reach surveyed Highway 1 bridge to SCD in 2009	MPWMD 2009a
	Highway 1 bridge to Schulte Rd. bridge	CRSA 2012
luvanila Panulation	Red Rock to Cachagua sampled from 1990 to 2009	MPWMD 2009b
Density	Wetted Front to Los Padres Dam sampled between 1973 to 2009	MPWMD 2009c
	Los Padres Dam sampled from 1949-2011	MPWMD 2011a
Adult steelhead Count	SCD sampled from 1954 to 2011	MPWMD 2011b
Benthic macroinvertebrates	Red Rock to Los Padres Dam sampled from 2000-2009	King 2010
Algae – Attached	Collected samples 2002–2003, 2008–2009 from 4 different monitoring sites (Schulte Rd, HWY 1, Nason Rd	Central Coast Ambient Monitoring Program 2012
Algae – Floating Mats	Community Park, Esquiline Rd)	

 Table 7. Existing aquatic ecology data sets.

3.1.4 Methods

Suggested monitoring methods for the aquatic ecosystem of the Carmel River are summarized in Table 8. With the removal of the dam more fish should be observed migrating upstream of the SCD location. This is because the SCD is acting as a barrier for upstream migration and may be a factor leading to the decline in steelhead population. To observe the population changes after the dam removal, fish counts should occur at the reroute location and Los Padres Dam. Obtaining a fish count will also help establish if there have been significant changes in population size post dam removal. Redd surveys should occur when spawning is most likely to take place, historically between February and April, and when the sandbar at the Carmel Lagoon is open.

Following King's (2010) recommendations, we propose conducting future bioassessments using the Surface Water Ambient Monitoring Program (SWAMP) protocol as opposed to the CSBP methods used in the study. Since invertebrates surveyed within a BMI assessment largely consist of terrestrial adults and aquatic larvae, sampling should coincide with when insects are in their larval stage. King (2010) found no seasonal variation between fall and spring sampling. Sampling post-dam removal should continue during only the fall to allow for the comparison of post and predam conditions while keeping sampling costs at a minimum.

In regards to algal sampling, we propose to collect quantitative algal assemblages, both floating mats and attached to benthic substrate, in free flowing reaches above and below the site of the dam removal and reroute and at various reaches along the river. Sampling will be divided into three stages: pre-removal/reroute, during removal/reroute, and post removal/reroute with biomass comparison before and after each stage. Methods will be followed according to the SWAMP bioassessment procedures for collecting stream algae samples (Fetsher et al. 2010) The variables to be compared for both attached and floating algal mats are:

- Biomass
- · Chlorophyll a concentrations
- · Diatom species richness
- · Diatom siltation index

 Table 8. Aquatic ecology monitoring methods.

Variable	Predicted change	Implications	Methods	Location	Frequency
	Increased access to	Increased redd	Compare redd count and	From Highway 1 bridge	Annually between
	spawning upstream	abundance	location data before and	to Los Padres Dam	February and
Redd abundance	of SCD		after dam removal using		April when the
			standard methods		sandbar at the
			(Gallagher et al. 2007)		lagoon is open
	Increased adult fish	Increased adult fish	Compare fish count data	Los Padres Dam and	
Adult Fish Count	count at the Los	count at the Los Padres	before and after dam	stream reroute location	Annually during
	Padres Dam,	Dam indicates	removal using fish count		fish migration
	possible increase	increased upstream	obtained from the DIDSON		
	fish count at stream	migration while	sonar if available or		
	reroute location	increased fish count at	electrofishing and		
		the reroute locations	snorkeling surveys and fish		
		indicates increase in	count of steelhead trucked		
		population size	past the Los Padres Dam		
	Increase juvenile	Increased juvenile fish	Compare juvenile fish count	Between the Narrows	Spring
	population	counts indicates	data before and after dam	and Los Padres Dam	
Juvenile fish count		improved habitat for	removal using seining,		
		steelhead	electrofishing and/or visual		
			surveys		
	Possible Increase in	Increased benthic	SWAMP	Locations illustrated in	Annually during
Ponthic	invertebrate	macroinvertebrate		the 10 year BMI report	the fall
Benthic	assemblage or no	assemblage and		(King 2010)	
Index	change	diversity indicates			
index		improved aquatic			
		conditions			

	Concentrations	Changes in water	Compare algal biomass	SCD/ Reroute (above	Biannually during
	increasing after 1	quality and amount of	concentrations in attached	and below), Schulte Rd,	the fall in
	year	sunlight reaching the	and floating mats using	the Narrows, Nason Rd	conjunction with
Algal Biomass		river bottom	standard collection	Community Park,	BMI sampling
			methods (Bushaw-Nelson et	Carmel Lagoon	
			al. 2002: Fetscher et al.	5	
			2010)		
	-	Increased algal	Compare chlorophyll a		
		abundance steelboad	concentrations before		
		abulldance, steelliead	concentrations before,		
Chlorophyll <i>a</i> biomass		food supply, and	during, and after removal		
		habitat suitability	using standard methods		
			(Thomson et al. 2005);		
			(Clarke and Warwick 1994)		
			Compare diatom species		
Distant su si s			richness before, during, and		
Diatom species			after removal using		
richness			standard methods		
			(Thomson et al. 2005)		
		Bioindicator of turbidity	Compare abundance of silt		
Diatom siltation index		and siltation	tolerant diatoms before,		
			during, and after removal		
			using standard methods		
			(Bahls et al. 1992)		

3.2 Terrestrial Ecosystem

3.2.1 Background

Vegetation is a key element determining river pattern and profile through processes of bank stabilization and sediment capture (Urguhart pers. *comm.*). The lower Carmel reaches are characterized by more stable meanders versus braided mid-river reaches, largely due to sustained erosion control by a combination of structural protection and vegetation (Hampson *pers. comm.*). Spatial variability in geology and channel morphology between upper, middle, and lower reaches of the Carmel generates high spatial heterogeneity in vegetation patterning, thus affecting terrestrial community composition (Smith et al. 2004). Over the past century, development and channel erosion have degraded riparian habitat, impacting aquatic and terrestrial biota (MPWMD 2004c). Terrestrial streamside inhabitants, such as the threatened California redlegged frog (*Rana aurora draytonii*), western pond turtle, and numerous resident and migratory bird species, depend on vegetated riverbanks to provide protection, habitat for breeding, and to maintain water quality. Heavily vegetated stream reaches may supply up to $1000g/m^2$ of organic matter, and can generate up to 99% of annual energy budgets for headwater streams (Bray and Gorham 1964, Fisher and Likens 1973).

The Carmel River provides riparian wetland habitat ideal for the California red-legged frog (CLRF), including channel ponds located in the SCD reservoir (MPWMD 2004c). In the Carmel River Valley, several riparian communities of interest have been identified as "high priority" habitats (CNDDB 2006):

- Central coast cottonwood (sycamore riparian forest)
- Arroyo willow series (central coast arroyo willow riparian forest)
- California sycamore series (sycamore alluvial woodland)
- Narrow-leaf willow series (central coast riparian scrub)
- White alder riparian forest
- California bay series (California bay forest)

- Mulefat scrub
- Bulrush-cattail series (coastal and valley freshwater marsh)

The cottonwood and willow series are considered vital indicators of riparian health (Christensen and Geisler 2008). Artificially lowering the groundwater table is one of the largest adverse impacts to riparian vegetation along the Carmel River (Hampson *pers. comm.*).

In 1996, the US Fish and Wildlife Service (USFWS) listed the CRLF as a threatened species. In 2001, the USFWS designated "critical habitat" for the CRLF, which included most of the Carmel River watershed (Jones and Stokes 2003). CRLFs have been observed in the slow-moving backwaters, adjacent-pools and tributaries to the Carmel River as these areas provide ideal breeding habitats (EWCG 2001; MPWMD 2004c; Reis 2002; Reis 2003). Riparian vegetation provides foraging ground and refuge while emergent vegetation has been shown to play a crucial role in egg mass attachment (Chubb 1999). The SCD creates a barrier to CLRF dispersal, and currently no CLRFs are found immediately downstream of the dam near the plunge pool (SEIR 2012). Additionally, annual drawdowns at SCD historically have presented risks to CRLF larval stages. Another negative pressure on the CRLFs is the introduced American bullfrog. The American bullfrog competes for CRLF habitat and preys upon tadpoles and adults (MPWMD 2004c). CRLF tadpole survival rates of less than 5% have been documented with the co-occurrence of bullfrog tadpoles (Lawlor 1999). Bullfrog eradication during CRLF surveys has benefited CRLF populations over the past decade (SEIR 2012).

3.2.2 Hypotheses

Dam removal is not anticipated to affect vegetation downstream of the SCD, but may cause loss of vegetation upstream due to decreased water availability (Urquhart *pers. comm.*). If the Carmel River cuts headward through sediment left in the upper portion of the reservoir, the water table may drop slightly. This effect could lead to loss of sensitive riparian vegetation, such as white alder, that are rooted on the sand and gravel

bars (Christensen *pers. comm.*). However, the riparian vegetation will likely reestablish fairly quickly at a slightly lower elevation as the channel form stabilizes (Christensen *pers. comm.*). A comparable dam removal on the Elwha River, WA, with a similar partially sediment-filled reservoir, has had upstream effects of bank head-cutting (Amy Draut pers. comm.). Downstream impacts of dam removal on the terrestrial ecosystem should be minimized as the 1,500,000 m³ of sediment behind the dam will be stabilized, revegetated, and covered with geotextiles to prevent catastrophic sediment release downstream due to flooding (Hecht 1977). Such releases would likely reduce food chain length and decrease the amount of energy available to CRLF and other riparian species (Marks et al. 2000). However, an overall increase in fine sediment loading is anticipated below the dam site after removal. This could increase substrates for emergent vegetation and habitats for terrestrial and aquatic species. The floodplain and bank width of the Carmel River could also become wider and increase lateral riparian habitat space. Bed aggradation could increase groundwater availability to streamside vegetation, reconnecting vegetation to elevated groundwater stores (Groeneveld and Griepentrog 1985). Increased delivery of LWD downstream will affect channel geomorphology, which will likely alter vegetative cover and composition (See Section 2.2).

Potential changes in geomorphology and vegetation have key implications for the habitat of the CRLF. Currently, CRLF populations are highly abundant along and upstream of the SCD reservoir, in areas with low gradient slope and bordering vegetative cover (SEIR 2012). This habitat extends at least to the edge of the deposited sediment bed. Since the reroute will occur 2,500 feet above the dam, there will be viable habitat loss once the reservoir dewatering occurs. While the reroute plans include step-pool reaches and off-channel pools, it is predicted that the natural channel migration and sediment deposition will make constructed off-channel pools temporary (MEI 2008). CRLF rescues from drying pools can mitigate this problem in the short-term, but long-term habitat viability is largely unknown. However, the population may benefit from

connectivity and adapt to the new habitat.

H₀: No change in riparian vegetation

Ha: Loss of riparian vegetation (upstream)

H₀: No change in emergent vegetation

H_a: Increase in emergent vegetation (downstream)

H₀: No change in canopy cover and canopy rating

H_a: Increase in canopy cover and rating (downstream)

H₀: No change in accessibility and topographic area of CRLF habitat (ponds)

H_a: Net loss or temporary disruption in CRLF habitat

H₀: CRLF populations will not migrate between upper and middle reaches

Ha: CRLF will migrate between upper and middle reaches after dam removal

 H_0 : No change in CRLF population size

Ha: Decrease in CRLF population size

H₀: No change in bullfrog population

H_a: Increase in bullfrog population and negative impact to local CRLF populations

3.2.3 Existing Data Sets

Surveys for CRLF have been conducted on behalf of California American Water (Cal-Am) in order to mitigate the effects of annual SCD reservoir drawdowns and comply with the Endangered Species Act (ESA). However, significant survey bias has resulted from a lack of monitoring all CRLF life history stages within the main stem Carmel River. Therefore, expanded CRLF monitoring is strongly recommended. Areas surveyed for the CRLF through 2004 are delineated on the map in Figure 8. These surveys have provided valuable long-term datasets on the CRLF historic range and the response of vegetation to changes in groundwater, surface flow, channel migration, and sediment fluxes. Cal-Am has also conducted annual aerial surveys of the Carmel riparian corridor in conjunction with the Monterey Peninsula Water Management District (MPWMD) since 1958. MPWMD has performed several vegetation surveys employing canopy rating (CR) and monthly canopy rating (AMCR) along with tensiometer readings to detect change in canopy health and cover as a function of groundwater drawdown and seasonal water stress (Table 9).

Subject	Summary	Reference
	Limiting factors by reach, i.e. bullfrog predation, water extraction, etc.	MPWMD 2004c
	Map of surveyed reaches for frogs and reproductive sites	MPWMD 2004c
	Population distribution GIS analysis in Carmel Valley	Wheeler 2004
	CRLF and Arroyo Toad Surveys	Hubbartt and Murphey 2005
CRLF	Frog and tadpole presence in 2002 at the De Dampierre restoration site; 2003 during CalAm water drawdown	Entrix 2003b, 2004, 2005, 2006
	Pond habitat along the Carmel River arm up to the SCD reservoir	Entrix 2003b, 2004, 2005, 2006
	2002–2006 annual surveys: CRLF reproduction documented inside-channel and off-channel pools up to 1.5 miles above SCD	Entrix 2003b, 2004, 2005, 2006
	CRLF presence in tributaries and in main stem in 1996	Jones and Stokes 2003
Emergent vegetation	Association between vegetation and CRLF at red rock ponds near Robinson Canyon Creek	Elkins 2000
Vegetation species diversity	Avifauna associated with increased diversity in riparian corridors	Williams and Williams 1988
Total Wooded Acreage	Total wooded acreage (riparian area) along the Carmel River from San Clemente Dam to the lagoon.	MPWMD 2004d

 Table 9. Existing terrestrial ecosystem data sets.

		Christensen 2003, 2004, 2007, 2009
Riparian restoration	Restoration efforts have increased riparian habitat in many areas of the Carmel River, as measured by aerial orthoimagery	Hampson 2005
Canopy ratings	Canopy cover has changed as a result of restoration and conservation efforts, water diversions, as measured by orthoimagery, walked transects, tensiometer and canopy stress indices	McNeish 1988; Christensen 2004, 2008, 2009
Riparian condition surveys	37 assessments of riparian condition along the Carmel, including photos and notes on plant species	MPWMD 2004e
Wetland Assessment	Assessment of wetland ponds off the upstream Carmel River above the SCD reservoir Jurisdictional wetlands were also assessed downstream of the reservoir with the largest delineation being 0.6 acres downstream of the plunge pool	Entrix 2005; Appendix W of 2012 SEIR

3.2.4 Methods

Annual aerial surveys (orthoimagery) by Cal–Am for the MPWMD can be used to identify reaches most affected by SCD removal and subsequent sediment delivery changes, especially reaches where the river has degraded or reaches with high bank erosion (Table 10). These surveys provide canopy cover data, helpful for determining where on-the-ground monitoring is most crucial. Aerial orthoimagery of the entire Carmel riparian corridor provides coarse-scale data for canopy cover in the Carmel watershed. Vegetation type can also be classified using available satellite imagery and the Normalized Difference Vegetation Index (NDVI) (Nagler et al. 2001).

Proper Functioning Condition (PFC) assessment data can be used to streamside vegetation and bank stability (MPWMD examine 2004d). Riparian trees (primarily *Salix* and *Populus*) can be monitored using the Canopy Rating Scale from the MPWMD Riparian Vegetation Monitoring Plan (2007) and should be selected randomly from previous vegetation monitoring sites and in areas where LWD currently exists. Keeler-Wolf (2004) provides extensive guidelines on protocols for assessing vegetation diversity in a riparian setting. These include vegetation counts and identification within pre-defined plots, line (pointintercept) and belt transects (Vaghti and Keeler-Wolf 2003). The California Native Plants Society (CNPS 2003) provides a rapid vegetation assessment technique. Photopoint monitoring can also be used to depict community-scale changes in vegetation health and cover. Archer and Fisher (2008) provide a discussion of the limitations of vegetation monitoring as related to hypothesis-testing and change measurement.

The monitoring protocol for CRLF within the Carmel River watershed should be conducted following the procedures described by the USFWS (USFWS 2005 and Haggard 2000). The study by Wheeler (2004) described in the existing data section, can also be referred to for general guidelines and recommendations.

Table	10.	Terrestrial	ecosystem	monitoring	methods.
-------	-----	-------------	-----------	------------	----------

Variable	Predicted Change	Implications	Methods	Location	Frequency
CRLF Migration	Local population migration to reroute, combined flow channel, and directly above/below SCD	Increased population connectivity and genetic diversity of population	Radio telemetry methodology described by Haggard (2000)	Proposed pools and 1000 feet up/downstream of the Combined flow reach and the reroute channel	Twice daily (morning and afternoon from January to May)
CRLF Habitat	Loss of current off- channel ponds upstream of SCD, including reservoir	Decrease in CRLF populations as a result of reductions in CRLF habitat	GIS Analysis: I. Data Sources II. Data Organization III. Data Analysis described by Wheeler (2004)	From SCD to 11 miles upstream	Collect data once pre and annually post dam removal
			USFWS (2005) data collection protocol	Main stem and 1000 feet up/downstream of the SCD removal	Annually
CRLF	Decreased survival of egg masses and tadpoles	Decrease in current SCD CRLF population	Nocturnal and Diurnal Surveys (Juvenile and Adult) by USFWS (2005)	Mains tem and 1000 feet up/downstream the combined flow reach and	Minimum of 4 nights: Jan- May and 4 days: June-Sep
Reproductive Success			Diurnal Surveys (Frog Egg Masses) by USFWS 2005 Larval frog surveys (USFWS 2005)	the reroute channel	Once every two weeks for two months from Dec-Feb Minimum of 4 separate days from Jan-Sep

	Increase in diversity of	Increases in	Aerial and ground-based	Downstream:	Annually, during early fall
	vegetation upstream	riparian vegetation	(photopoint)	Below SCD (Sleepy Hollow),	
Dinarian		health, bank	photography,	Boronda Rd., De Dampierre,	
Kipanan		strength and	multispectral	Garland Park, Rancho	
Divorcity		habitat value	automated imagery	Cañada, San Carlos, Valley	
Diversity			classification using NDVI	Hills, Schulte Rd.	
			transects, vegetative plots		
			and vegetation tags	Upstream	
	Increase in canopy	Changes in bank	Manual assessment using	Pine Creek downstream to	Seasonal, four times per year
Canopy	rating	strength and	AWCR from MPWMD	reroute	
Rating		habitat value	protocol (Christensen		
			2009; RVMP 2009)		
	Changes in total		Aerial orthoimagery, GIS		
	canopy cover		classification using NDVI		
	upstream and		(Nagler et al. 2001),		
	downstream		transect, plot diversity		
			measures (alpha beta,		
			gamma diversity)		
Canopy			(Christensen 2009; RVMP		
Cover			2009)		
			Multispectral satellite	Pine Creek downstream to	
			imagery, aerial remote	river reroute; Boronda Rd.	
			sensing, GIS classification		
			using NDVI, alpha beta,		
			gamma diversity, (Nagler		
			et al. 2001)		

	Increase in emergent vegetation	Increases in bank strength and habitat value, increased CRLF habitat	Aerial imagery survey (orthoimagery), ground- based photography	Downstream: Below SCD (Sleepy Hollow), Boronda Rd., De Dampierre, Garland Park, Rancho Cañada, San Carlos, Valley	Seasonal, four times per year
Emergent Vegetation				Hills, Schulte Rd. Upstream: Pine Creek downstream to reroute	
				May also be recorded concurrent to thalweg surveys	

3.3 Marine Ecosystem

3.3.1 Background

Carmel Bay sits at the head of the Carmel Submarine Canyon which provides nutrients to support a diverse array of marine plant and animal life. High relief bedrock substrates, sandy and granite reef habitats, and canopy forming giant and bull kelp forests provide habitat for a variety of species including rockfish, surfperch, invertebrates, harbor seals and endangered southern sea otters (*Enhydra lutris*). Carmel Bay is within the Monterey Bay National Marine Sanctuary and is protected under numerous federal, state and local regulations to ensure preservation of this unique ecosystem. In the 1970's Carmel Bay was designated as an Area of Special Biological Significance (ASBS) to protect water guality and established as a State Marine Conservation Area (SMCA), which is now included in the network of Marine Protected Areas to prohibit take of marine resources. Other protection initiatives and regulations include designation as a Restricted Overflight Area, Prohibited Shark Attraction Area, California Sea Otter Game Refuge and Rockfish Conservation Area (MLPA 2005).

Unlike most dam removal projects, the SCD removal and Carmel River Reroute project does not involve naturally releasing impounded sediments downstream (UCR [date unknown]). Sediment releases can create a large plume that flows to the ocean, impacting intertidal community structure (Duda et al. 2011). Stabilizing reservoir sediment and rerouting the river avoids the impacts and uncertainties of naturally releasing the sediment downstream (Capelli 2007). Due to possible changes in flow regime and sediment transport of the Carmel River, it is reasonable to expect sediment delivery to the ocean to increase over the long-term. Ocean conditions and beach dynamics have not been modeled or included in the Environmental Impact Assessment/Statement for this project so impacts to Carmel Bay are largely unknown (DWR 2008).

3.3.2 Hypotheses

Changes in sediment delivery to the ocean can cause both physical (firstorder) and biological (second-order) changes with potential impacts at the community and ecosystem levels. Possible changes to increased suspended and deposited sediment include increased turbidity, altered substrate and habitat, and reduced density and diversity of intertidal species such as invertebrates, kelp and fish. Any increase in sediment load to Carmel Bay has potential to cause changes at the ecosystem level through covering of rocky substrates with fine sediments and subsequent effects on invertebrate and kelp (*Macrocystis pyrifera*) populations. Deposited sediments can smother invertebrates and kelp holdfast sites while suspended sediments can reduce overall kelp productivity (Thayer et al. 2005).

Reductions in kelp and invertebrate densities in Carmel Bay would have direct implications for the southern sea otter that relies on the kelp forests for protection and the associated invertebrates for food. The southern sea otter is a keystone species in kelp ecosystems as feeding on invertebrates keeps the population in check and prevents invertebrates such as sea urchins from eating holdfast sites and destroying kelp forests. Therefore, increased sediment delivery to Carmel Bay has potential to disrupt ecosystem balance and cause ecosystem collapse through direct impacts to the southern sea otter habitat and food source (NOAA 2011). The following hypotheses were derived from the above information and directly drive the monitoring methods suggested by this document:

H₀: No change in turbidity H_a: Turbidity will increase

H₀: No change in availability of rocky substrates and habitats H_a: Shift from rocky substrates/habitats to sandy substrates/ habitats H₀: No change in kelp cover and productivity H_a: Reduced kelp cover and productivity

H₀: No change intertidal diversity (fish and invertebrate density) H_a: Reduced intertidal diversity (fish and invertebrate density)

3.3.3 Existing Data Sets

Existing data sets for Carmel Bay and supplementary information are provided to address the hypotheses listed above and to provide baseline data for future monitoring efforts (Table 11). Federal, state and local regulations within Carmel Bay have prompted a variety of research and monitoring studies. Designation as an MPA and inclusion in the Monterey Bay Sanctuary has resulted in baseline monitoring studies within the Carmel Bay SMCA and various research projects as part of sanctuary-wide monitoring efforts. Marine Life Protection Act stakeholder processes and meetings can also provide comprehensive information on specific MPAs. A comprehensive set of historic data in table format has been compiled for the Carmel Bay SMCA through this process (MLPA 2005). The Monterey Bay National Marine Sanctuary's Research and Monitoring website provides technical reports by staff members and projects funded by the Sanctuary, while the Sanctuary Integrated Monitoring Network (SIMoN) collects and integrates monitoring information for the Sanctuary into a searchable database and various data portals.

Subject	Summary	Reference
	Annual reports (2000, 2001, 2003-2008, 2011-present):	CWC [date unknown]*
	Transparency/turbidity using transparency tube	
Turbidity	Maps and text files (2001–2009):	MLML [date unknown]
	Optical attenuation using underway data acquisition	
	systems (UDAS)	

 Table 11. Existing marine ecosystem data sets.

	 GIS Data Portal (1994–2000): Bathymetry, Surficial Sediment Samples and Sidescan Senar 	USGS 2006a
Sediment/Substrate	 GeoTiff, GRID or Shapefiles: Shaded relief, Bathymetry , Rugosity, Substrate/Habitat Analysis, Topographic Position Index, Sidescan Sonar, Slope 	CSUMB 2006*
	 GIS Data Portal: Bathymetry, Grain Size, Dominant Sediment and Bottom Type 	USGS2006b*
	 Distribution of sediment and rock outcrops See coastal geomorphology section for methods 	Storlazzi and Field 2000
	 Bathymetry, Mean Grain Size, % sand, gravel, clay, silt using grab samples and gravity core 	Carter 1971
	 Shapefiles (1989, 1999, 2002-2009): Kelp canopy cover using historic surveys, aerial photographs and Digital Multi-Spectral Video System 	CDFG 2011
Kelp	 Annual reports (2007, 2008): Annual productivity and density using hyperspectral remote sensing from aircraft flown sensor 	CICORE 2007, 2008*
	 Publication: Canopy cover and abundance using time series analysis of aerial photos (1985–1991) 	Donnellan 2004*
Intertidal Diversity	 Data Portal of MPA baseline data and Multi-Agency Rocky Intertidal Network (MARINe) data: Intertidal Biodiversity and Subtidal Community Surveys Includes diversity and abundance of invertebrates and fish using submersible and scuba surveys Also includes rock type, vertical relief and macro algae 	PISCO 2011*
	 Data tables (2007-present): Siting frequency and density scores of invertebrates and fish using scuba transects (Seaweed abundance also recorded) 	REEF [date unknown]

* See SIMoN website for further details

3.3.4 Methods

The existing data sets aim to identify studies that can be used for future monitoring efforts and that could capture effects of dam removal in the future, as several initiatives are ongoing. While some of these studies can be used as a baseline for suggested monitoring methods, we recommend employing a before and after monitoring design if time permits. It is expected to take decades for the Carmel River to establish a more natural sediment regime and anywhere from 17-40 years for sand to reach the Carmel Lagoon according to modeling studies (Urguhart pers. comm.). Therefore, increased sediment and any physical and biological impacts are expected to take around the same amount of time to reach the ocean, if not longer. Due to this time lag, it would be possible to conduct a unique before and after monitoring study to assess the effects of this type of dam removal on the coastal environment. However, pre-dam removal monitoring should take place as soon as possible as downstream sediment movement can take place more rapidly than model predictions as seen on the Elwha River (Draut pers. comm.). The Elwha River monitoring plan employed a before and after monitoring approach with scuba surveys and can be used as a framework to monitor impacts of dam removal in Carmel Bay. Another recommendation is to use a remote sensing technique, such as hyperspectral imagery, combined with GIS to comprehensively assess key variables such as turbidity, substrate, kelp, intertidal and diversity (Table 12).

 Table 12. Marine ecosystem monitoring methods.

Variable	Predicted Change	Implications	Methods	Location	Frequency
Turbidity	More turbid	Lower productivity of kelp, algae and benthic vegetation	Hyperspectral remote sensing with airborne sensor	Pascadero Point to Point Lobos	At least once before dam removal and every 5 years thereafter
Substrate Type	Shift from rocky substrates to fine sediments	Reduction of invertebrate habitats and kelp holdfast sites	Environment for Visualizing Images (ENVI) for analysis	Shoreline to ~0.25 mile offshore (~60	
Surface kelp cover	Reduced kelp cover, benthic vegetation	Alteration of community structure, stability and risk	Protocols: (Hennia et	n deep)	
Intertidal Diversity	and biological diversity	of ecosystem collapse (i.e. southern sea otter)	al. 2007) (Bissett and Zimmerman 2004)		
Visibility	Decreased clarity	Impacts to research, recreation and potentially productivity	Scuba Diver Transect Surveys (30 m)	Carmel Point to Point Lobos	Annually for 5 years before dam removal and annually thereafter
Grain size	Smaller grain sizes (sand)	Smothering and burial of intertidal organisms and covering of rocky substrates	coefficient and t-test for data analysis	~10 -60 ft deep	
Habitat Type	Shift from rocky intertidal to sandy habitats	Changes in community structure and risk of ecosystem collapse	Protocol: (Duda et al. 2011)		
Kelp, invertebrate, fish densities	Decreased kelp, fish and invertebrate densities				

4 Discussion

The goal of this report was to create a hypothesis-driven monitoring plan that could identify the possible physical and biological changes related to the removal of the SCD. The focus of our proposed monitoring plan was to examine the physical changes to the river system and make inferences about how these changes may influence ecosystem function.

Natural variability of the Carmel River and the absence of baseline data characterizing this variability presented difficulties in the formation and investigation of hypotheses. As this may be the first attempt to reroute a river around impounded reservoir sediment, interpreting data and literature from previous dam removals was also problematic. In each case, the best possible conclusions based on existing data were investigated using scientific literature supplemented by personal communication with local and regional watershed experts before an inference was made. Null hypotheses, representing the status-quo for the Carmel River, and alternate hypotheses, representing detectable changes from historic conditions, were presented.

While rerouting the river and stabilizing the sediment is likely to minimize detrimental effects, changes in the physical and biological function of the river system are inevitable. Monitoring location and frequency are critical for quantitatively capturing changes before and after the SCD removal and reroute project. For hydrologic and water quality monitoring, stratified zone-specific methods are critical for plan development, resource allocation, and monitoring over both the short and the long-term. Hydrologic impacts, both chemical and physical, may result in changes in water quality and quantity over different spatial and temporal scales.

For fluvial geomorphology, monitoring of five distinct reaches of the river is suggested based on areas of high interest, available data and ease of access. In these reaches, it is hypothesized that bed load volume, fine sediment, and suspended sediment load will increase, causing channel movement and an overall increase in bed elevation. It is believed the observation of increased sediment transport will proceed slowly over time, and result in increased embeddedness downstream of the SCD. Density and size of LWD is expected to increase immediately.

Changes in these first-order parameters will initiate second-order impacts on ecological systems in the Carmel River. Increased LWD transport downstream of the dam may increase the diversity of habitat available to aquatic biota, resulting in greater species richness, diversity, population, and ultimately greater ecosystem resilience. However, increased embeddedness may cause a decrease in BMI abundance and decreased steelhead spawning habitat. The removal should increase access to habitat upstream of the current dam location, promoting development of steelhead populations in the upper Carmel watershed.

Riparian vegetation will also be affected by first-order changes, based on position relative to the SCD removal. Upstream sites may show reduction in vegetation cover and canopy due to reductions in groundwater status provided by the SCD reservoir. Reduction in riparian health and canopy cover may reduce bank integrity above the sediment reservoir, further reducing riparian habitat for terrestrial organisms such as the CRLF. However, CRLFs may benefit from increased habitat connectivity after the removal due to increased stream bank integrity via LWD.

The effects of the SCD removal on the coastal and marine environments will be observed last due to proximity to the SCD. The beach and the lagoon are dynamic systems, with sand constantly being shifted around by peak river flows, ocean waves and wind. Consequently, tracking changes in river and lagoon profile should be regularly performed to assess and predict future changes to the river within the coastal interface. Assessing these changes is imperative to ensure the protection of floodplain infrastructure and steelhead rearing habitat within the lagoon. For the marine environment, it is important to establish comprehensive baseline data so changes in this unique ecosystem can be detected.

With numerous dams in the United States reaching the end of their functional lifespan, an increase in the number of removal projects is forthcoming. Because the dam removal process and understanding of their impacts are still in their infancy, it is important to monitor physical and biological changes. Our comprehensive monitoring plan provides a well-rounded framework for future dam removal monitoring efforts.

5 References

- [AMBAG] Association of Monterey Bay Area Governments. 2012. GIS Data layers. [Internet]. [cited 2012 October 1]. Available from: http://www.ambag.org/
- Allan D., Wipfli M., Caouette J., Prussian A., Rodgers J. 2003. Influence of streamside vegetation on inputs of terrestrial invertebrates to salmonid food webs. Can. J. Fish. Aquat. Sci. 60: 309-320. doi: 10.1139/F03-019
- Archer E, Fisher R. 2008. Effectiveness monitoring for streams and riparian areas: sampling protocol for vegetation parameters. [Internet]. [cited 2012 September 19]. Available from: http://www.fs.fed.us/biology/resources/pubs/feu/pibo/pibo_2008_veg_prot ocol.pdf
- Arnold RA, Gilchrist JA, Allaback M, Norman J. 2006. Low-effect habitat conservation plan for the Smith's Blue Butterfly and the California red-legged frog, at the Post Ranch Inn (APN 419-311-034) in Big Sur, Monterey County, California. Draft 3.7. Revision 8. p. 1-112.
- [ASDSO]. Association of State Dam Safety Officials. 2000. Dam safety facts. [cited 2012 September 27]. Available from: http://www.damsafety.org/
- Bahls LR, Bukantis R, Tralles S. 1992. Benchmark biology of Montana reference streams. Water Quality Bureau, Montana Department of Health and Environmental Science, Helena, Montana.
- Bednarek AT. 2001. Undamming rivers: a review of the ecological impacts of dam removal. Environmental Management 27 (6): 803-814.
- Bell E, Dagit R, Ligon, F. 2011 Colonization and persistence of a Southern California steelhead (*oncorhynchus mykiss*) population. Bulletin, Southern California Academy of Sciences 110 (1): 1–16.
- Bissett PW, Zimmerman RC. 2004. Final Report: Imaging Spectroscopy of Coastal Habitats within the Monterey Bay National Marine Sanctuary. Cited 2012 September 17. Available from:

http://sanctuarysimon.org/regional_docs/site_build/CICORE_Report_2004.p df

- Bond MH, Hayes SA, Hanson CV, MacFarlane RB. 2008. Marine survival of steelhead (*Oncorhynchus mykiss*) enhanced by a seasonally closed estuary. Can. J. Fish. Aquat. Sci. 65:2242-2252.
- Boughton DA. 2012. National Oceanic and Atmospheric Administration Fisheries. Personal communication to the ENVS 660 Class.
- Boughton DA, Adams P, Anderson E, Fusaro C, Kelley E, Lentsch L, Nielsen J, Perry K, Regan H, Smith J, Swift C, Thompson L, Watson F. 2007. Viability Criteria for Steelhead of the South-Central and Southern California Coast. NOAA Tech. Memo. NOAA-TM-NMFS-SWFSC-407. 37 pp.
- Bray J, Gorham E. 1964. Litter production of forests of the world. Advanced Ecological Research 2: 101–157.
- Brungs W, Jones B. 1977. Temperature Criteria for Freshwater Fish: Protocol and Procedures. Environmental Research Lab-Duluth, Minn. EPA/600/3-77/061.
- [BSLT] Big Sur Land Trust. 2007. Lower Carmel River and Lagoon Floodplain Restoration and Enhancement Project, December 2007. [Internet]. [cited 2012 October 1]. Available from: http://www.mpwmd.dst.ca.us/Mbay_IRWM/IRWM_library/LCR/LCRproject.pd f
- [Bulletin 118]. 2004. Central Coast Hydrologic Basin: Carmel Valley Ground water. [Internet]. [cited 2012 September 28]; Available from: http://www.water.ca.gov/pubs/groundwater/bulletin_118/basindesc ptions/3-7.pdf
- Bury RB, Stewart GR. 1973. California protects it herpetofauna. HISS News-Journal, 1(2): 43-48.
- Bushaw-Newton KL, Hart DD, Pizzuto JE, Thomson JR, Egan J, Ashley JT, Johnson TE, Horwitz RJ, Keeley M, Lawrence J, Charles D, Gatenby C, Kreeger DA, Nightengale T, Thomas RL, Velinsky DJ. 2002. An integrative approach

towards understanding ecological responses to dam removal: The Manatawny Creek study. Journal of the American Water Resources Association [Internet]. [cited 2012 September 26]; 38(6):1581–1599. Available from: http://onlinelibrary.wiley.com/library2.csumb.edu:2048/doi/10.1111/ji

http://onlinelibrary.wiley.com.library2.csumb.edu:2048/doi/10.1111/j.1752 -1688.2002.tb04366.x/pdf

Capelli MH. 2007. San Clemente and Matilija Dam Removal: Alternative sediment management scenarios. U.S. Society on Dams – Annual Meeting Conference; 2007 March 5–9; Philadelphia, PA. [Internet]. [cited 2012 September 13]. Available from:

http://digital.library.ucr.edu/cdri/documents/Final%20San%20Clemente%20a nd%20Matilija%20Dam%20Removal%20Alternatives.pdf

- [CRTAC] Carmel River Technical Advisory Committee. 2007. Study plan for longterm management of the Carmel River barrier beach and lagoon, Carmel, CA. 38 pp.
- Carter LS. 1971. Recent marine sediments of Carmel Bay, California [M.S. Oceanography thesis]. Monterey (CA): Naval Post Graduate School. 132 p. [Internet]. [cited 2012 September 13]. Available from: http://ia701204.us.archive.org/19/items/recentmarinesedi00cart/recentmar inesedi00cart.pdf
- Casagrande J, Watson F. 2003. Hydrology and water quality of the Carmel and Salinas lagoons Monterey Bay, California 2002/2003, Report to Monterey County Water Resources Agency, California. The Watershed Institute, California State University Monterey Bay, Rep. No. WI-2003-14. 128 pp.
- Casagrande J, Watson F. 2006. Reclamation ditch watershed assessment and management plan: part A – watershed assessment. Monterey County Water Resources Agency and The Watershed Institute, California State University Monterey Bay. 283 pp.
- Casagrande J, Watson F, Anderson T, Newman W. 2002. Hydrology and water quality of the Carmel and Salinas lagoons Monterey Bay, California 2001/ 2002, Report to Monterey County Water Resources Agency, California. The

Watershed Institute, California State University Monterey Bay, Rep. No. WI-2002-04.

- Castorani S, Ilse J, Dillon H, Ritz C, Spear B, Stern J, Dillon L, Urquhart K, Watson F. 2008. Carmel Lagoon water quality and sonar soundings: Fall 2008. Watershed Institute, California State University Monterey Bay, Publication No. WI-2008-5, 29 pp.
- Catford JA, Downes BJ, Gippel CJ, Vesk PA. 2011. Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. Journal of Applied Ecology 48 (2): 432-442.
- [CAW] Cal-Am Water. [date unknown]. San Clemente Dam Seismic Safety Project: Draft Supplemental EIR, No. 2 Old Carmel River Dam Removal. SCH # 2005091148. (2012). [Internet]. [cited 2012 September 28]; Available from: http://www.sanclementedamremoval.org/wpcontent/uploads/2011/08/Public-Draft-SEIR-No-2-OCRD-Removal.pdf
- [CAW] Cal-Am Water. 2012. [Internet]. [cited on 2012 September 28]. Available from: Amwater.com/caaw/customer-service/rates-information/Montereysan-clemente-dam-removal-project.html
- [CCAMP] Central Coast Ambient Monitoring Program. 2012. [Internet]. [cited 2012 September 28]; Available from: http://www.ccamp.info/_status/view_data.php?org_id=region3#top
- [CCoWS] Central Coast Watershed Studies. 2004. Physical and hydrologic assessment of the Carmel River watershed, California. CSUMB.
- [CDFG] California Department of Fish and Game. 2011. Marine Region GIS Unit: Natural Resource Layers. [Internet]. [cited 2012 September 17]. Available from: http://www.dfg.ca.gov/marine/gis/naturalresource.asp
- [CDIP] Coastal Data Information Program. [date unknown]. 185 Monterey Bay West. Available from: http://cdip.ucsd.edu/?&sub=data&nav=historic&stn=185&stream=p1

- [CDWR] California Department of Water Resources. 2012. Final supplement to the environmental impact report: San Clemente dam seismic safety project-Chapters 1, 2, 3, 4, 6 and Appendices. [Internet]. [cited 2012 September 28]. Available from: http://www.water.ca.gov/pubs/safety/dams/final_supplemental_eir_san_cle mente_dam_seismic_safety_project/san_clemente_dam_final_seir_july_2012. pdf
- Chaney, B. 2012. Monterey Peninsula Water Management District. Personal communication with the ENVS 660 Class.
- Chapman G.1986. Ambient water quality criteria for dissolved oxygen. Environmental Protection Agency, Washington, D.C. Office of Water Regulations and Standards. EPA/440/5-86/003.
- Christensen TT. 2003. Using GIS to quantify riparian area overlying the Carmel Valley alluvial aquifer. Monterey Peninsula Water Management District Technical Memo 2003-02.

Christensen TT. 2005. Riparian Restoration on California's Coast. Coastal Training Program. Elkhorn Slough National Estuarine Research Reserve. Available from: http://www.elkhornsloughctp.org/uploads/files/1154556919Christensen%2 OPresentation.pdf

- Christensen TT. 2012. Monterey Peninsula Water Management District Personal communication. September 15, 2012.
- Christensen TT, Geisler E. 2008. Riparian corridor monitoring report. Prepared for the MPWMD. [Internet]. [cited 2012 August 19]. Available from: http://www.mpwmd.dst.ca.us/programs/river/riparian_reports/RiparianRep ort_2008_Final.pdf
- Christensen TT, Geisler E. 2009. Riparian corridor monitoring report. Prepared for the MPWMD. [Internet]. [cited 2012 August 19]. Available from: http://www.mpwmd.dst.ca.us/programs/river/riparian_reports/RiparianRep ort_2009_Final.pdf

- Christensen T, Watters P, Wheeler J. 2004. Riparian Corridor monitoring report: Carmel River. [Internet]. [cited 2012 September 28]. Available from: http://www.mpwmd.dst.us/programs/river/riparian_reports/riparianreport2 004.pdf
- Chubb, S. 1999. Letter to Ina Pisani, providing U.S. Forest Service comments on working draft of recovery plan.
- [CICORE] Center for Integrative Coastal Observation, Research and Education. 2007. Semiannual Progress Report. [Internet]. [cited 2012 September 17]. Available from: http://www.calstate.edu/coast/documents/CICORE_PR_10_8-31-07_sml.pdf
- [CICORE] Center for Integrative Coastal Observation, Research and Education. 2008. Semiannual Progress Report. [Internet]. [cited 2012 September 17]. Available from: http://www.humboldt.edu/marinelab//documents/CICORE_Report_11.pdf
- Clarke KR, Warwick RM. 1994. Change in marine communities: an approach to statistical analysis and interpretation. 1st edition. Plymouth Marine Laboratory, Natural Environment Research Council, Plymouth, UK.
- [CNDDB]. California Natural Diversity Database. 2006. Rarefind 3 Query. California Department of Fish and Game. Sacramento, CA.
- [CNPS] California Native Plants Society. 2003. Rapid vegetation assessment protocol. [Internet]. [cited 2012 September 20]. Available from: http://www.cnps.org/cnps/vegetation/pdf/protocol-rapid_assess.pdf
- Coles-Ritchie MM, Henderson RC, Archer EK, Kennedy C, Kershner JL. 2007. Repeatability of riparian vegetation sampling methods: how useful are these techniques for broad-scale, long-term monitoring? USDA general technical report.
- [CRSA] Carmel River Steelhead Association. 2012. CRSA redd surveys 2012. Available at: http://www.carmelriversteelheadassociation.org/news.html
- [CSUMB] California State University Monterey Bay. 2006. Seafloor Mapping Lab Data Library Monterey Peninsula- Monastery to Cypress Pt. [Internet]. [cited 2012 September 12]. Available from: http://seafloor.csumb.edu/SFMLwebDATA_mb.htm#PLOB
- [CSUMB/CCoWS] California State University Monterey Bay. [date unknown]. Protocols for water quality and stream ecology research. Report Series. [Internet]. [cited 2012 September 28]. Available from: http://ccows.csumb.edu/home/proj/long/protocols/protocols.htm
- [CWC] Coastal Watershed Council. [date unknown]. Coastal Watershed Council Reports: Central Coast Regional Snapshot Day. [Internet]. [cited 2012 September 27]. Available from: http://coastal-watershed.org/cwc-reports/
- D'Amore A, Kirby E, Hemingway V. 2009. Reproductive Interference by an Invasive Species: An Evolutionary Trap? Herpetological Conservation and Biology 4(3):325-330.
- Davidson C. 1995. Frog and toad calls of the Pacific Coast: Vanishing voices. Library of Natural Sounds, Cornell Laboratory of Ornithology, Ithaca, New York. 27, 1 pp.
- Dawson JL, Smithers SG. 2010. Shoreline and beach volume change between 1967 and 2007 at Raine Island, Great Barrier Reef, Australia. Global and Planetary Change 72 (3): 141-154.
- Donnellan MD. 2004. Spatial and temporal variability of kelp forest canopies in central California [M.S. Marine Science thesis]. Moss Landing Marine Laboratories and San Jose State University. 84 p. [Internet]. [cited 2012 September 13]. Available from: http://bio.research.ucsc.edu/people/carr/publications/Nereolit/Nereo%20online%20PDFs/Donnellan%202004.pdf
- Doyle MW, Stanley EH, Harbor JM, Grant GS. 2003. Dam removal in the United States: Emerging needs for science and policy. Eos [Internet]. [Cited 2012 September 27]; 84(4):29-36. Available from:

http://www.yubashed.org/sites/default/files/null/damrem_doyleetal_2003_ damremneedssciencepolicy_prj.pdf

- Draut, AE. 2012. United States Geological Survey. Personal Communication with the ENVS 660 class on 2012 September 25.
- Draut AE, Logan JB, Mastin MC. 2011. Channel evolution on the dammed Elwha River, Washington USA. Geomorphology 127:71-87.
- Duda JJ, Warrick JA, Magirl CS, eds. 2011. Coastal habitats of the Elwha River, Washington— Biological and physical patterns and processes prior to dam removal: U.S. Geological Survey Scientific Investigations Report 2011-5120, 264 pp.
- [DWR] Department of Water Resources. [date unknown]. Mitigation monitoring and reporting program. California State Clearing House #2005091148. [Internet]. [cited 2012 September 28]. Available from: http://www.water.ca.gov/pubs/safety/dams/san_clemente_dam_seismic_saf ety_project_mitigation_monitoring_and_reporting_program__mmrp_/scdssp_ exhibit_d_-_mitigation_monitoring_and_reporting_program.pdf
- [DWR] Department of Water Resources. 2008. San Clemente Dam Seismic Safety Project Final EIR/EIS: Appendix E Response to Comments. [Internet]. [cited 2012 September 12]. Available from: http://www.sanclementedamremoval.org/wpcontent/uploads/Vol%203%20Appendix%20E%20Response%20to%20Commen ts.pdf
- Elkins E. 1996. Protecting California red-legged frog on the Carmel River. Capstone Project. California State University of Monterey Bay.
- Elkins E. 2000. Protecting *Rana aurora draytonii* on the Carmel River by determining maximum allowable discharge. Undergraduate capstone for Bachelors of Science.

Endangered Species Act 1997. 16 U.S.C. Sections 1531-1544.

- ENTRIX, Inc. 2000. Final biological assessment for the seismic retrofit of San Clemente Dam. April 2000.
- ENTRIX, Inc. 2003a. Biological assessment for the San Clemente drawdown project, 2003–2004. Prepared for U.S. Army Corps of Engineers and U.S. National Marine Fisheries Service. February 2003.
- ENTRIX, Inc. (with Ecological Studies and Califauna). 2003b. Revised final report for the San Clemente Dam drawdown project, June–July 2003. Prepared for U.S. Army Corps of Engineers, on behalf of California American Water Company.
- ENTRIX, Inc. 2004a. Draft Report for the San Clemente Dam drawdown project, May -June 2004. Prepared for U.S. Army Corps of Engineers, on behalf of California American Water Company. August 2004.
- ENTRIX, Inc. 2004b. Draft biological assessment for the San Clemente Dam drawdown project, 2005 – 2007. Prepared for U.S. Army Corps of Engineers, on behalf of California-American Water Company. October 2004.
- ENTRIX, Inc. 2005. Draft Report for the San Clemente Dam drawdown project, July-August 2005, Carmel River, Monterey County, California. Prepared for the U.S. Army Corps of Engineers, San Francisco, CA, on behalf of California American Water Company.
- ENTRIX, Inc. 2006. Report for the San Clemente Dam drawdown project, June-August 2006. Prepared for the U.S. Army Corps of Engineers, San Francisco, CA, on behalf of California American Water Company. October 2006.
- ESSP 660 CSUMB Class. 2007. Carmel Lagoon Water Quality and Steelhead Soundings: Fall 2007. The Watershed Institute, California State Monterey Bay, Publication No. WI-2007-04, 24 pp.
- ESSP 660 CSUMB Class. 2008. Carmel Lagoon Water Quality and Sonar Soundings: Fall 2008. The Watershed Institute, California State Monterey Bay, Publication No. WI-2008-05, 29 pp.

- ENVS 660 CSUMB Class. Daniels M, Frank D, Holloway R, Kowalski B, Krone-Davis P, Quan S, Stanfield E, Young A, Watson F. 2010. Evaluating Good Water Quality Habitat for Steelhead in Carmel Lagoon: Fall 2009. The Watershed Institute, California State Monterey Bay, Publication No. WI-2010-03, 42 pp.
- [EWCG] Ecosystems West Consulting Group. 2001. Draft biological assessment of California red-legged frog, Carmel River Dam and Reservoir Project, Monterey County, California. Prepared for the Monterey Peninsula Water Management District, U.S. Army Corps of Engineers, and the California-American Water Company.
- Fetscher AE, Busse L, Ode PR. 2010. Standard operating procedures for collecting stream algae samples and associated physical habitat and chemical data for ambient bioassessments in California. SWAMP Bioassessment Procedures [Internet]. [cited 2012 September 26]. Available from: http://swamp.mpsl.mlml.calstate.edu/wpcontent/uploads/2010/06/SWAMP_SOP_Algae_Field_Collection_050110.pdf
- Fisher SG, Likens GE. 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs 43: 421-439.
- French J, DM Latham, RS Oldham, Bullock DJ. 1992. An automated radio tracking system for use with amphibians. In I. G. Priede and S.M. Swift (eds.), Wildlife telemetry: remote monitoring and tracking of animals, pp. 477–483.
- Froke JB. 2004. Final report for the San Clemente Dam Drawdown Project, 2004, California red-legged frog, Carmel River, Monterey County, California.
 Prepared for the U.S. Army Corps of Engineers, San Francisco, CA. Prepared with support from Dawn Reis Ecological Studies. Prepared on behalf of California American Water Company, Monterey, CA.
- Froke JB. 2005. Summary of CRLF data from 2005 San Clemente Dam Drawdown Project: Reis & Froke. Email to Christie Robinson, ENTRIX, Inc. June 4, 2007.

- Froke JB. 2007. Protection of California red-legged frogs in the Carmel River during the 2006 drawdown of the San Clemente Reservoir, Monterey County, California. Submitted to California American Water Company, Monterey, CA, and U.S. Fish & Wildlife Service, Ventura, CA.
- Gallagher SP, Hahn PK, and Johnson D.H. 2007. Redd counts. Pages 197-234 in Johnson DH, Shrier BM, O'Neal JS, Knutzen IJA, Augerot X, O'Neil TA, and Pearsons TN. Salmonid field protocols handbook: techniques for assessing status and trends in salmon and trout populations. American Fisheries Society, Bethesda, Maryland.
- [GMA] Graham Matthews & Associates. 2007. 2007 Carmel River surveys. Available from: Monterey Peninsula Water Management District, Monterey, California. 14 pp.
- Graf WL. 1999. Dam nation: A geographic census of American dams and their large-scale hydrologic impacts. Water Resources Research 35(4):1305-1311.
- Groeneveld P, Griepentrog TE.1985. Interdependence of groundwater, riparian vegetation, and streambank stability: a case study. Presentation to the Symposium on Riparian Ecosystems and their management, Tucson, Arizona. April 16-18.
- Haggard JAG. 2000. A Radio Telemetric Study of the Movement Patterns of Adult Northern Red-Legged Frogs (*Rana aurora aurora*) at Freshwater Lagoon, Humboldt County, California. Master's Thesis. Humboldt State University.
- Hampson L. 2005. Monterey Peninsula Water Management District. Riparian restoration on California's coast. Presentation to the MPWMD.
- Hampson L. 2012. Monterey Peninsula Water Management District. Personal communication to the CSUMB ENVS 660 course.
- Hayes MP, MR Jennings. 1986. Decline of ranid frog species in western North America: are bullfrogs (*Rana catesbeiana*) responsible? Journal of Herpetology 20: 490–509.

- Hayes MP, MR Jennings. 1988. Habitat correlates of distribution of the California red-legged frog (*Rana aurora draytonii*) and the foothill yellowlegged frog (*Rana boylii*): Implications for management. Pages 144– 158 In: R.
- Hayes SA, Bond MH, Hanson CV, Freund EV, Smith JJ, Anderson EC, Ammann AJ, MacFarlane RB. 2008. Steelhead growth in a small Central California watershed: upstream and estuarine rearing patters. Transactions of the American Fisheries Society 137: 114–128.
- Hecht B. 1977. Sequnetial changes in bed habitat conditions in the upper Carmel River following the Marble-Cone fire of August 1977. Presented at the California Riparian Systems Conference. University of California, Davis Sept. 17–19.
- Hennig BD, Cogan CB, Bartsch I. 2007. Hyperspectral remote sensing and analysis of intertidal zones: A contribution to monitor coastal biodiversity.
 In: Car A., Griesebner G, Strobl J. editors: Geospatial Crossroads at Geoinformatics Forum; 2007; Salzburg, Germany. p. 62–73. Cited 2012 September 13. Available from: http://www.viewsoftheworld.net/data/Hennigetal_2007_giforum.pdf
- Heyer W, Donelly M, McDairmid R, Hayek L, Foster M. 1994. Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Inst. Press, Washington, D.C.
- Hubbartt VK and Murphy TG. 2005.Surveys for California Red-Legged Frog and Arroyo Toad on the Los Padres National Forest. USDA Forest Service Gen. Tech. Rep. PSW-GTR-195.
- James GW. 1994. Surface water dynamics at the Carmel River Lagoon, Water Years 1991 through 1994. MPWMD Technical Memorandum 94-05.
- James GW. 1996. Carmel River Basin -- Surface Water Resources Data Report, Water Years 1992-1995, Monterey Peninsula Water Management District, October 1996.

- James GW. 1999. Carmel River Basin -- Surface water resources data report, Water Years 2000-2003, Monterey Peninsula Water Management District, January 2004. James GW. 2005. Surface water dynamics at the Carmel River Lagoon water years 1991 through 2005. Monterey Peninsula Water Management District Technical Memorandum 05-01. 152 pp.
- James GW. 2009. Carmel River Basin -- Surface water resources data report, Water Years 2004-2008, Monterey Peninsula Water Management District.
- [MPWMD] James GW. Technical Memorandum 05-01. Surface water dynamics at the Carmel river lagoon. Water years 1991-2005. [Internet]. [Cited 2012 September 29]. Available from:http://www.mpwmd.dst.ca.us/carmel_river_lagoon/MPWMD_TM_05-01_finalCD.pdf
- Jennings MR. 1987. Annotated checklist of the amphibians and reptiles of California, second revised edition. Southwestern Herpetologists Society, Special Publication (3): 1-48.
- Jennings MR. 1988. Natural history and decline of native Ranids in California. Pages 61–72 In: H. F. DeLisle, P. R. Brown, B. Kaufman, and B. M. McGurty (editors), Proceedings of the conference.
- Jennings MR, Hayes MP. 1990. Status of the California red-legged frog (*Rana aurora draytonii*) in the Pescadero Marsh Natural Preserve. Final report prepared for the California Department of Parks and Recreation, Sacramento, California. 30 p. + tables and figures. California herpetology. Southwestern Herpetologists Society, Special Publication (4): 1–143.
- Jennings MR, Hayes MP. 1994. Amphibian and reptile species of special concern in California. Final report to the California Department of Fish and Game, Inland Fisheries Division, Rancho Cordova, California, under contract (8023).
- Jennings MR, Townsend S, Duke RR. 1997. Santa Clara Valley Water District California Red-legged Frog Distribution and Status-1997. Final Report

prepared by H. T. Harvey & Associates, Alviso, California.

- Jones and Stokes. 2003. Draft Carmel River flow threshold study. Prepared for Monterey Peninsula Water Management District. [Internet]. [cited 2012 Sept 15]. Available from: http://www.mpwmd.dst.ca.us/eir0203/draft2_2002feb23FinalCarmelRiver.p df
- Joy L, Watson F. 2004. Carmel River lagoon enhancement project: preliminary water quality report. The Watershed Institute, California State Monterey Bay, Publication No. <Not published>.
- Kelly SA. 2012. Geomorphic change in the upper Carmel River, CA: Effects of the 2008 basin complex fire [BS Capstone project]. Marina (CA): California State University Monterey Bay, 36 pp.
- King JT. 2010. Ten-year summary of the Monterey Peninsula Water Management District's Bioassessment Program on the Carmel River. Monterey Peninsula Water Management District. Available at: http://www.mpwmd.dst.ca.us/wrd/fisheries/BMI/BMI.htm
- Kondolf, G.M. 1995a. Channel processes and riparian habitat in the deltas of Los Padres and San Clemente Reservoir, Carmel River, California. Review of MPWMD Technical Memorandum 95-01, report submitted to MPWMD, Monterey, California.
- Kondolf, G. M. 1995b. Geomorphic stream channel classification in aquatic habitat restoration. Aquatic Conservation: Marine and Freshwater Ecosystems, 5, 127-142.
- Kondolf, G.M. 1995c . Five elements for effective evaluation of stream restoration, Restoration Ecology, 3: 133-136.
- Kondolf GM. 1996. A cross section of stream channel restoration. Journal of Soil and Water Conservation 51(2): 119 pp.

- Kondolf GM. 1997. Hungry water: Effects of dams and gravel mining on river channels. Environmental Management 21(4): 533-551.
- Kondolf GM. 2000. Assessing salmonid spawning gravel quality. Transactions of the American Fisheries Society 129: 262-281.
- Kondolf GM, Curry RR. 1986. Channel erosion along the Carmel River, Monterey, California. Earth Surface Processes and Landforms 11: 307-319.
- Kondolf GM, Wolman MG. 1993. The sizes of samonid spawning gravels. Water Resources Research 29(7): 2275-2285.
- Kraus NC, Patsch K, Munger S. 2008. Barrier beach breaching from the lagoon side, with reference to Northern California. Shore & Beach 76 (2): 33 42.
- Larson J, Watson F, Casagrande J, Pierce B. 2006. Carmel River lagoon enhancement project: water quality and aquatic wildlife monitoring, 2005–6 Report to California Department of Parks and Recreation. The Watershed Institute, California State University Monterey Bay, Publication No. WI–2006– 06, 102 pp.
- Larson J, Watson F, Masek J, Watts M. 2005. Carmel River Lagoon Enhancement Project: Water Quality and Aquatic Wildlife Monitoring. Report to California Department of Parks and Recreation. The Watershed Institute, California State University Monterey Bay, Publication No. WI-2005-12, 130 pp.
- Laudier NA. 2009. Wave overtopping of a barrier beach [thesis]. Monterey (CA): Naval Postgraduate School. 60 pp.
- Lawler SP, Dritz, D, Strange T, Holyoak M. 1999. Effects of introduced mosquito-fish and bullfrogs on the threatened California red-legged frog. Conservation Biology 13, 613-622.
- Lentz EE, Hapke CJ. 2011. Geologic framework influences on the geomorphology of an anthropogenically modified barrier island: Assessment of dune/beach changes at Fire Island, New York. Geomorphology 126 (1-2): 82-96.

- Los Padres Forest Watch. [date unknown]. 2004–2012 Los Padres Forest Watch, Inc. [Internet]. [cited 2012 September 21]. Available from: http://www.lpfw.org/archive/index.htm.
- Marks JC, Power ME, Parker MS. 2000. Flood disturbance, algal productivity, and interannual variation in food chain length. Oikos 90: 20-27.
- Matthews G. 2008. Carmel River surveys. Prepared for Monterey Peninsula Water Managment District. [Internet]. [cited 2012 September 27]. Available from: http://www.mpwmd.dst.ca.us/Mbay_IRWM/IRWM_library/LCR/2007tha lweg.
- McNeish CM. 1988. The effects of groundwater pumping on riparian vegetation: Carmel Valley Draft. Prepared for the MPWMD.
- [MEI] Mussetter Engineering Inc. 2002. Carmel River sediment-transport study. Available from: California Department of Water Resources. 143 pp.
- [MEI] Mussetter Engineering Inc. 2005. Hydraulic and sediment-transport analysis of the Carmel River bypass option, California. Prepared for California American Water, Monterey Division, Monterey, California, April.
- [MEI] Mussetter Engineering Inc. 2008a. Flood inundation mapping, flood hazard evaluation, and downstream impact analysis of the Carmel River reroute and removal option for the San Clemente Dam Seismic Retrofit Project, California. Prepared for the California Coastal Conservancy, Oakland, California.
- [MEI] Mussetter Engineering Inc. 2008b. Final Basis of Design Report. Available from: California State Coastal Conservancy.
- [MEI] Mussetter Engineering Inc. 2011. Flood Inundation Mapping, Flood Hazard Evaluation, and Downstream Impact Analysis of the Carmel River Reroute and Removal Option for the San Clemente Dam Seismic Retrofit Project, California. [Internet]. [cited 2012 September 28]; Available from: http://digital.library.ucr.edu/cdri/documents/Carmel%20Reroute%20Option% 20Analysis%20Report%203-5-08.pdf

- Miller K J, Willy A, Larsen S, Morey S. 1996. Endangered and threatened wildlife and plants; determination of threatened status for the California red-legged frog. Federal Register, 61(101): 25813-25833.
- [MLML] Moss Landing Marine Laboratories. [date unknown]. Underway Data Acquisition Systems Data Archive. Cited 2012 September 27. Available from: http://weathernew.mlml.calstate.edu/serveudas/udas_vessel.html
- [MLPA] Marine Life Protection Act Central Coast Regional Stakeholder Group. 2005. California Marine Life Protection Act Initiative: Evaluation of existing central coast marine protected areas draft 2.0. Cited 2012 September 18. Available from: http://www.dfg.ca.gov/mlpa/pdfs/agenda_110905att2.pdf
- [MPWMD] Monterey Peninsula Water Management District. 2003. Carmel River Fishery Report June 2003. Monterey Peninsula Water Management District. Available at: http://www.mpwmd.dst.ca.us/asd/board/boardpacket/2003/20030616/28 /item28.htm
- [MPWMD] Monterey Peninsula Water Management District. 2004a. Carmel River Watershed Assessment. Section 5.5.2.3. Limiting factors for California redlegged frog populations. [Internet] [cited: 2012 September 21]. Available from:

http://www.mpwmd.dst.ca.us/programs/river/watershed_assessment/5_5% 5C5_5_2%5C5_5_2_3%5C5_5_2_3_text.pdf

- [MPWMD] Monterey Peninsula Water Management District . 2004b. Environmental and biological assessment of portions of the Carmel River Watershed Monterey County, California. Monterey Peninsula Water Management District. Available at: http://www.mpwmd.dst.ca.us/programs/river/watershed_assessment/TOC. htm
- [MPWMD] Monterey Peninsula Water Management District. 2004c. Riparian_reports. [Internet]. [cited 2012 August 20]. Available from: http://www.mpwmd.dst.ca.us/programs/river/riparian_reports/riparian_rep orts.htm

- [MPWMD] Monterey Peninsula Water Management District. 2004d. Watershed assessment and action plan for the Carmel River watershed, California. Available from: Monterey Peninsula Water Management District, Monterey, California, 40 pp.
- [MPWMD] Monterey Peninsula Water Management District. 2004e. Watershed assessment and sites. [Internet]. [cited 25 September 2012]. Available from: http://www.mpwmd.dst.ca.us/programs/river/watershed_assessment/5_7% 5C5_7_3%5C5_7_3_text.pdf

[MPWMD]. Monterey Peninsula Water Management District. 2008a. Carmel River Fishery Report May 2008. Monterey Peninsula Water Management District. Available at: http://www.mpwmd.dst.ca.us/asd/board/boardpacket/2008/20080519/21 /item21.pdf

[MPWMD] Monterey Peninsula Water Management District. 2008b. Carmel River Fishery Report May 2009. Monterey Peninsula Water Management District. Available at: http://www.mpwmd.dst.ca.us/asd/board/boardpacket/2009/20090521/21 /item21.htm

- [MPWMD] Monterey Peninsula Water Management District. 2009a. Carmel River-Fall juvenile steelhead population density. Monterey Peninsula Water Management District. Available at: http://www.mpwmd.dst.ca.us/wrd/fisheries/juv/graph73_06.htm
- [MPWMD] Monterey Peninsula Water Management District. 2009b. Carmel River juvenile steelhead population survey. Monterey Peninsula Water Management District. Available at: http://www.mpwmd.dst.ca.us/wrd/fisheries/juv/stat%20lineal%20density10 09_2009.htm
- [MPWMD] Monterey Peninsula Water Management District. 2009c. Carmel River Watershed: Water Supply Perspective. A presentation for the Western States Source Water and Ground Water Protection Forum.

- [MPWMD] Monterey Peninsula Water Management District. 2010. 2008–2009 Annual Report (July 1, 2008–June 30, 2009). Available from: Monterey Peninsula Water Management District, Monterey, California, 17 pp.
- [MPWMD] Monterey Peninsula Water Management District. 2011a. Number of steelhead at Los Padres Dam. Monterey Peninsula Water Management District. Available at: http://www.mpwmd.dst.ca.us/wrd/fisheries/lpcounts/lpcounts49_11.htm

[MPWMD] Monterey Peninsula Water Management District. 2011b. Number of steelhead at San Clemente Dam. Monterey Peninsula Water Management District. Available at: http://www.mpwmd.dst.ca.us/wrd/fisheries/adultcounts/adultcountshome. htm

- [MPWMD] Monterey Peninsula Water Management District. 2012. 2010 2011 annual report (July 1, 2010 – June 30, 2011) for the MPWMD mitigation program. Available from: Monterey Peninsula Water Management District, Monterey, California. 170 pp.
- [MPWMD] Monterey Peninsula Water Management District. [date unknown]. Daily Carmel River Streamflow (2005–12). [Internet]. [Cited on 2012 September 28]. Available from: http://www.mpwmd.dst.ca.us/wrd/riverflows/riverflows.htm

[MPWMD] Monterey Peninsula Water Management District. [date unknown]. Mitigation Program Annual Reports 1991-Present. [Internet]. [Cited 2012 September 28]. Available from: http://www.mpwmd.dst.ca.us/programs/mitigation_program/annual_report /annual_reportrev1.htm

[MPWMD] Monterey Peninsula Water Management District. [date unknown]. Proper Functioning Condition surveys. [Internet]. [cited 2012 September 15]. Available from:

http://www.mpwmd.dst.ca.us/programs/river/watershed_assessment/5_4/5 _4_1/main_stem_assessments/main_stem_assessments.htm

- Mullen, David A. November 11–13, 1996. Biological Data Report. Results of the Preconstruction Surveys for California Red–legged Frog (*Rana aurora draytonii*) Along the Carmel River, Monterey County, California. Prepared for the Department of The Army Corps of Engineers, San Francisco District.
- Nagler PL, Glenn EP, Huerte AR. 2001. Assessment of spectral vegetation indices for riparian vegetation in the Colorado River delta, Mexico. Journal of Arid Environments 49 (1): 91–110.
- [NOAA] National Oceanic and Atmospheric Administration. [date unknown]. NOAA Tides and Currents. Available from: http://tidesandcurrents.noaa.gov/
- [NOAA] National Oceanic and Atmospheric Administration- National Ocean Service. 2011. Kelp forests provide habitat for a variety of invertebrates, fish, marine mammals, and birds. Cited 2012 September 27. Available from: http://oceanservice.noaa.gov/facts/kelplives.html
- [NOAA/NMFS]. National Oceanic and Atmospheric Administration/National Marine Fishery Service. 2012.Biological Opinion: The Carmel River Reroute and San Clemente Dam Removal Project at eh San Clemente Dam on the Carmel River. [Internet]. [cited 2012 September 28]. Available from: http://swr.nmfs.noaa.gov/bo/San_Clemente_Dam_Removal_072312.pdf
- Padre Associates Inc. 2007. CRLF Survey Results for the PXP produced water reclamation facility for San Luis Obispo, CA. Project No. 0902-0291.
- Perry W, Watson F, Casagrande J, Hanley C. 2007. Carmel River lagoon enhancement project: water quality and aquatic wildlife monitoring, 2006-7.
 Report to California Department of Parks and Recreation. The Watershed Institute, California State Monterey Bay, Publication No. WI-2007-02, 100 pp.
- Podolak C. 2010. Marmot dam removal geomorphic monitoring and modeling project. Annual Report June 2008 - May 2009. Prepared for Sandy River Basin Watershed Council.

- [PWA]Philip Williams & Associates. 2007. Supplemental Carmel River watershed action plan. Prepared for The Planning and Conservation League Foundation in partnership with The Carmel River Watershed Conservancy. [Internet]. Available from: http://carmelriverwatershed.org/wpcontent/themes/FactoryWP/assets/documents/2007%20Supplemental%20Ca rmel%20River%20Watershed%20Action%20Plan.pdf
- [PISCO] Partnership for Interdisciplinary Studies of Coastal Oceans. 2011. PISCO Data Access. [Internet]. [Cited 2012 September 12]. Available from: http://osu.piscoweb.org/DataCatalogAccess/DataCatalogAccess.html
- Price A. 2005. Large woody debris in the Carmel River: assessment of changes in density and distribution and implications for restoration [BS Capstone project]. Marina (CA): California State University Monterey Bay, 32 pp.
- Rathbun GB. 1997. Ball chain transmitter attachment for ranid frogs and kangaroo rats. Forum on Wildlife Telemetry: Innovations, evaluations, and research needs; 21–23 September 1997, Snowmass Village, Colorado.
 Program and Abstracts. U.S. Geological Survey and the Wildlife Society.
 Jamestown, ND: Northern Prairie Wildlife Research Center Home Page.
 [Internet]. [cited 2012 September 15]. Available from: http://www.hpwrc.usgs.gov/resource/tools/telemtry/telemtry.html.
- Rathbun GB, Murphey T. 1993. A new radio-transmitter attachment for large ranid frogs. U.S. Dept. of the Interior, Fish and Wildlife Service Information Bulletin No. 58.
- Rathbun GB, Murphey T. 1996. Evaluation of a radio-belt forranid frogs. Herpetological Review 27(4):187-189.
- Rathbun GB, Jennings MR, Murphey TG, Siepel NR. 1993. Status and ecology of sensitive aquatic vertebrates in lower San Simeon and Pica Creeks, San Luis Obispo County, California. Final Report under Cooperative Agreement 14– 16–0009–91–1909 between U.S. Fish and Wildlife Serv. and Calif. Dept. of Parks and Recreation. Publ. No. PB93–230779, National Technical Information Serv., Springfield, VA.

- [REEF] Reef Environmental Education Foundation. [date unknown]. Species abundances at Carmel River. [Cited 2012 September 27]. Available from:http://ned.reefcheck.org/site_data.php?site_num=8&year=2011.
- Reis, Dawn. 2002. CRLF (*Rana aurora draytonii*) Monitoring Report for the Carmel River In-Stream Habitat Restoration Project at DeDampierre Park, Monterey, California.
- Reis D. 2003a. Annual Report for Permit #TE-057714-0 Under section 10(a)(1)(A) of the ESA for submission to the United States Department of Interior Fish and Wildlife Service by Dawn Reis.
- Reis D. 2003b. California red-legged frog Tadpole Surveys and Translocations During the California-American Water Company 2003 Water Withdrawal in the Carmel River, Monterey County, CA: The United States Fish and Wildlife Service Biological Opinion (1-8-99-FW-7). Prepared by Dawn Reis Ecological Studies. 82 pp.
- Richards S J, Sinsch U, Alford RA. 1994. Radio tracking. In Heyer WR, Donnelly MA, McDiarmid RW, Hayek LC, Foster MS (eds.). Measuring and monitoring biological diversity: Standard Methods for Amphibians. Washington: Smithsonian Institution Press. p. 155–158.
- Ritson PI, Hayes MP. 2000. Late season activity and overwintering in the northern red-legged frog (*Rana aurora aurora*). Final report to US Fish and Wildlife Service.
- Rosenberg, L. 2001. Geologic resources and constraints Monterey county California. County of Monterey Environmental Resource Policy Department.
- Roth NE, Allan JD, Erickson DL. 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11(3): 141-156.
- Rundio D., Lindley, S. 2008. Seasonal Patterns of Terrestrial and Aquatic Prey Abundance and Use by Oncorhynchus mykiss in a California Coastal Basin

with a Mediterranean Climate. Transactions of the American Fisheries Society 137:467-480. DOI: 10.1577/T07-076.1

- San Clemente Dam Removal Project. 2012. Background and history. [Internet]. [cited on 2012 October 1]. Available from: http://www.sanclementedamremoval.org/
- Satterthwaite WH, Beakes MP, Collins EM, Swank DR, Merz JE, Titus RG, Sogard SM, Mangel M. 2009. Steelhead life history on California's Central Coast: insights from a state-dependent model. Transactions of the American Fisheries Society 138: 532-548.
- Schmieder RR, RS Nauman. 1994. Effects of non-native aquatic predators on premetamorphic California red-legged frogs *(Rana aurora draytonii).* University of California, Santa Cruz. 12 pp.
- [SEIR] Supplemental Environmental Impact Report. 2012. San Clemente Dam Seismic Safety Project (SCDSSP). 2012. Draft Supplement to the EIR, No. 2 Old Carmel River Dam Removal. SCH#2005091148.
- Slagel MJ, Griggs GB. 2008. Cumulative losses of sand to the California coast by dam impoundment. Journal of Coastal Research 24(3): 571-584.
- Smith DP. 2012. California State University Monterey Bay. Personal communication to the CSUMB ENVS 660 course.
- Smith DP, Huntington P. 2004. Carmel River large woody debris inventory from Stonepine to Carmel Lagoon, Fall 2003: Watershed Institute, California State University Monterey Bay, Publication No. WI-2004-01, 72 pp.
- Smith DP, Huntington P, Harter K. 2003. Carmel River large woody debris inventory from San Clemente Dam to the lagoon. Watershed
 Institute, California State University Monterey Bay, Publication No. WI-2003-13, 38 pp.
- Smith DP, Newman WB, Watson F, Hameister J. 2004. Physical and hydrologic assessment of the Carmel River Watershed, California. The Watershed

Institute, California State University Monterey Bay, Publication No. WI-2004-05/2, 88 pp.

- Smith DP, Newman W, Watson F, Hameister J. 2005. Physical and hydrologic Assessment of the Carmel River Watershed, California. Report to Carmel River Watershed Conservancy. The Watershed Institute, California State University Monterey Bay, Rep. No. WI-2004-05/2. 94 pp. Appendix B (metadata for map set) published as separate file. Separate link to Project page.
- Storlazzi CD, Field ME. 2000. Sediment distribution and transport along a rocky, embayed coast: Monterey Peninsula and Carmel Bay. Marine Geology 170: 289-316.
- [SWAMP] Surface Water Ambient Monitoring Program: Site-Specific Monitoring Workplan Central Coast Regional Water Quality Control Board. 2002. [Internet]. [cited 2012 September 28]. Available from: http://www.waterboards.ca.gov/water_issues/programs/swamp/docs/workp lans/0203_r3wp.pdf
- Sylte T, Fischenich C. 2002. Techniques for measuring substrate embeddedness. Ecosystem Management and Restoration Research Program: ERDC TN-EMRRP-36.
- Tabacchi E, Correll DL, Hauer R, Pinay G, Planty-Tabacchi A, Wissmar RC. 1998. Development, maintenance and role of riparina vegetaion in the river landscape. Freshwater Biology 40: 797-516.
- Thayer GW, McTigue TA, Salz RJ, Merkey DH, Burrows FM, Gayaldo PF. 2005.
 Science-based restoration monitoring of coastal habitats, volume two: Tools for monitoring coastal habitats. [Internet]. [Cited 2012 September 26].
 Available from: http://www.era.noaa.gov/pdfs/Scibased%20Restoration%20Monitoring-%20Vol%202.pdf
- Thomson JR, Hart DD, Charles DF, Nightengale TL, Winter DM. 2005. Effects of removal of a small dam on downstream macroinvertebrates and algal

assemblages in a Pennsylvania stream. Journal of North American Benthological Society [Internet]. [cited 2012 September 19]; 24(1): 192–207. Available from: http://www.jstor.org.library2.csumb.edu:2048/stable/pdfplus/4095708.pdf ?acceptTC=true

- Thorne JH, Kennedy JA, Quinn JF, McCoy M, Keeler-Wolf T, Menke J. 2004. A vegetation map of Napa County using the manual of California Vegetation classification and its comparison to other digital vegetation maps. Madrono 51(4):343-363.
- Thornton EB. 2005. Littoral processes and river breaching at Carmel River Beach. Monterey (CA): Naval Postgraduate School. 12 p.
- [UCR] University of California Riverside. [date unknown]. Clearinghouse for dam removal information-Ecology and River Restoration. [Internet]. [cited 2012 September 27]. Available from: http://digital.library.ucr.edu/cdri/?keywords=Ecology%20and%20river%20res toration&author=&dam=&river=&&title=&sort=&page=1
- Urquhart K. 2012. Monterey Peninsula Water Management District. Personal communication to the CSUMB ENVS 660 course.
- URS Corporation. [date unknown]. Final supplement to the environmental impact report for the San Clemente Dam seismic safety project. 2012. Prepared for the Department of Water Resources.
- [USDA] United States Department of Agriculture Natural Resources Conservation Service. [date unknown]. Geospatial Data Gateway: 2012 NAIP imagery for Monterey County, CA. Available from: http://datagateway.nrcs.usda.gov/
- [USEPA] United States Environmental Protection Agency. 2000. Protecting Endangered Species in Monterey County. Pesticides and Toxic Substances (H-7506C). March 2000.

- [USFW] United States Fish and Wildlife Service. 2000. Draft recovery plan for the California red-legged Frog. (*Rana aurora draytonii*). U.S. Fish and Wildlife Service, Portland, Oregon.
- [USFW] United States Fish and Wildlife Service. 2002. Recovery plan for the California red-legged frog (*Rana aurora draytonii*). Region 1, U.S. Fish and Wildlife Service, Portland Oregon, May 28, 2002.
- [USFW] United States Fish and Wildlife Service. 2005. Revised guidance on site assessments and field surveys for the California red-legged frog. U.S. Fish and Wildlife Service, Portland, Oregon. 26 pp.
- [USFW] U.S. Fish and Wildlife Service. 2012. [Internet]. [cited 2012 September 14]. Available from: http://www.fws.gov/endangered/
- [USGS] United States Geological Survey. 2006a. Coastal and Marine Geology Program Internet Map Server: Monterey Bay Region. Cited 2012 September 17. Available from: http://coastalmap.marine.usgs.gov/ArcIMS/Website/usa/westcoast/cencal/

montereybay/viewer.htm

- [USGS] United States Geological Survey. 2006b. Coastal and Marine Geology Program Internet Map Server: usSEABED Pacific West Coast Sediment Data. Cited 2012 September 12. Available from: http://coastalmap.marine.usgs.gov/ArcIms/Website/usa/westcoast/usseabe d_2006/viewer.htm
- [USSD] United States Society on Dams. 2011. 31st annual USSD conference in San Diego, April 2011. 21st century dam design -advances and adaptations.
- Vaghti M, Keeler-Wolf T. 2004. Suisun marsh vegetation mapping change detection 2003. A report to the California Department of Water Resources. Prepared by Wildlife Habitat Data Analysis Branch, Department of Fish and Game.
- Watson F, Casagrande J. 2004. Potential effects of groundwater extractions on Carmel Lagoon. Report to California-American Water Company. The

Watershed Institute, California State University Monterey Bay, Rep. No. WI-2004-09.

- Watson F, Newman W, Anderson T, Kozlowski D, Hager J, Casagrande J. 2002. Protocols for water quality and stream ecology research. The Watershed Institute, California State University Monterey Bay, Rep. No. WI-2002-05d.
- Wheeler J. 2004. Using GIS to document California red-legged frogs (*Rana aurora draytonii*) and their reproductive habitat within the Carmel River watershed. Carmel River Watershed Assessment. Section 5.5.2.2.
- Williams T. 2012. National Oceanic and Atmospheric Administration Fisheries. Personal communication to the CSUMB ENVS 660 course.
- Williams M, Williams JG. 1988. Avifauna and riparian vegetation in the Carmel Valley, Monterey County, California. Presentation to the California Riparian Systems Conference, Davis, CA Sept 22–24.
- Willis CM, Griggs GB. 2003. Reductions in fluvial sediment discharge by coastal dams in California and implications for beach sustainability. The Journal of Geology 111(2): 167–182.
- Winter BD, Crain P. 2008. Making the case for ecosystem restoration by dam removal in the Elwha River, Washington. Northwest Science 82:13-26.
- Xasuan, 2012, Cal-Am Once Again Threatens to Derail Dam Removal Unless They Get Their Way: Xasuan Today Blog, June 6, 2012. Last visited 10/10/12, http://xasauantoday.com/2012/06/21/cal-am-threats/